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Abstract

This paper presents recent research which provides an over-arching model

of exemplar theory capable of explaining phenomena across the phonetic

and syntactic strata. The model represents a unique exemplar-based ac-

count of constituency interactions encompassing both linguistic domains.

It yields simulation and experimental results in keeping with experimen-

tal findings in the literature on syllable duration variability and offers an

exemplar-theoretic account of local grammaticality. In addition, it provides

some insights into the nature of exemplar cloud formation, and demonstrates

experimentally the potential gains that can be enjoyed via the use of rich

exemplar representations.

Exemplar Theory was initially proposed in the domain of psychology (Nosofsky, 1986; Hintz-

man, 1986). However, recent years have seen a growing body of research into exemplar-based

theories of perception and production and how they can account for certain linguistic phenom-

ena. The particular attraction of exemplar-based models lies in their ability to explain phenomena

which more abstractionist models find problematic. Unlike more traditional, often generative, rule-
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oriented approaches, at the core of Exemplar Theory is the idea that the acquisition of language

is significantly facilitated by repeated exposure to concrete language input. Central to Exemplar

Theory are the notions of frequency, recency, and similarity. Extensive storage of language input

exemplars takes place, categorization of input is made by comparison with extant exemplar memory

traces, production is facilitated by accessing these stored exemplars, and the exemplar memory is

in a constant state of flux with new inputs updating it and old unused exemplars gradually fading

from memory.

Hay and Bresnan (2006) note the relatively independent development of Exemplar Theory

research on phonetics and syntax and argue in favor of combining the two strands in the belief

that joint predictions might emerge which neither research area alone would yield. Before briefly

examining each of these lines of enquiry in turn, it is worth noting that the research presented in

this paper complements Hay and Bresnan’s combination of the research literatures, by presenting a

single over-arching model capable of explaining phenomena from both fields, phonetics and syntax.

The key innovation of the model is its explicit formalization of the relationship between exemplars

on the constituent level and exemplars on what is referred to as the unit level. Constituents

are segments, for example consonants and vowels, in phonetics, and words in syntax. Units are

represented by syllables in phonetics and by phrases or sentences in syntax. The general hypothesis

posited here is that a competition exists between the submodel at the level of constituents and

the submodel at the level of units and that the unit level submodel “wins” if the unit exemplar

receives sufficient activation. Although a similar relationship between constituents and units can

be found in other models (Grossberg, 2003), to the authors’ knowledge the model presented here

is the first to explicitly model and invoke constituency interaction in Exemplar Theory to explain

a number of phenomena. In particular this single model accounts for syllable frequency effects and

the acquisition of local grammatical knowledge, and explores constituency interaction within the
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syntax and phonetics domains.

The next two sections explore background exemplar-theoretic research from the perspective

of syntax and phonetics respectively. These sections are followed by section 3 which presents a

general overview of the multi-level model. This model is instantiated in section 4 for syllable

duration modeling and in section 5 for local grammaticality modeling. Section 6 concludes the

article with some discussion on the results achieved and opportunities for future work.

1. Exemplar-theoretic Syntax

Recent years have seen considerable debate concerning the nature and extent of children’s

early syntactic representations and the potential influence of distributional properties of the input

upon them. One side of the debate supports the view that from a very early stage children possess

abstract, generalized knowledge of the syntax of their language (or at least aspects of it), e.g.

(Naigles, 1990; Gertner, Fisher, & Eisengart, 2006).

Another facet of the debate, however, centers around the proposition that abstract syntactic

knowledge emerges over time and that early syntactic representations are organized around par-

ticular lexical exemplars the child has encountered (Childers & Tomasello, 2001), and a grammar

is essentially an emergent property of two key processes: a) storage of exemplars, and b) inference

(for categorization and production) over exemplars. The next three subsections examine exemplar

phenomena in children and adults and attempt to model these effects.

Exemplar-theoretic syntax in language acquisition

The first corner-stone of exemplar-theoretic linguistic research is that during language acqui-

sition children perceive and store concrete pieces of language which they avail of to analyze and

produce new utterances. A significant body of evidence supports the idea of word and phrasal stor-

age and sensitivity to their respective frequencies when it comes to syntactic generalizations and
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productivity. In particular, much of this work has focused on investigating children’s understand-

ing of transitive, passive, and dative constructions, and their sensitivity to novel verbs and nouns,

by using preferential looking experiments (based on an individual’s tendency to look at a scene

related to what he or she hears, instead of looking at an unrelated scene) and elicitation experi-

ments where children are encouraged to produce sentences employing a target structure or word.

In the case of the elicitation experiments the children are often primed with particular structures

or lexical items beforehand. This priming technique takes advantage of an observed effect whereby

individuals tend to reuse syntactic structures or lexical items which have recently been employed.

Pinker et al. (1987) found that 3-and-half-year-old, and older, children presented with a novel verb

in a passive sentence, e.g. The fork is being floosed by the pencil, were able to produce canonical

transitive sentences, i.e. sentences of the form subject-verb-object (SVO), using the novel verb, e.g.

It’s floosing the fork, although they had never heard the verb used in such a construction. However,

a number of studies by Tomasello and colleagues also examining children’s ability to produce novel

transitives, using novel verbs, would appear to indicate otherwise for younger children (Tomasello

& Brooks, 1998; Olguin & Tomasello, 1993; Akhtar & Tomasello, 1997).

Akhtar (1999) report that 4-year-old children “corrected” to canonical word order with novel

verbs which had only been presented in “weird word order”, no matter how often they heard them.

Younger children, however, were equally likely to employ SOV and VSO word orders for the verbs

they heard used in that form as they were to correct to SVO order. Building on Akhtar’s work,

Matthews et al. (2005) employed English verbs of varying frequencies to establish if lexical frequency

influences children’s knowledge of word order as a grammatical marker. In an elicited production

task they found that younger children (2;9) have a tendency to match weird word order, which is

replaced by a partial correction to English word order, and then full transitivity as verb frequency

increases. They argue that “the acquisition of word order,..., is not a binary affair but is rather
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an instance of gradually strengthening, graded representations”(Matthews et al., 2005, p.132) .

Interestingly, the model presented in section 3 employs graded representations as the backbone for

acquiring local syntactic knowledge.

Further work by Childers and Tomasello (2001), building on research by Nelson (1977), inves-

tigated 2-and-a-half-year old children’s understanding of the English transitive construction, this

time with a particular focus on pronouns. They presented a large number of exemplars of a novel

syntactic construction to children over a short period of time, with the result that acquisition of

the construction was facilitated significantly. Huttenlocher et al. (2002) found a a significant cor-

relation between the proportion of multi-clause sentences produced by children and the proportion

produced by their parents and school teachers (used to control for genetic advantage). Indeed,

Huttenlocher et al. found that the same relative frequencies of different multi-clause sentence types

(coordinate clauses, relative clauses, and complement clauses) found for parents were also found for

children, and that the complexity of teacher speech was significantly related to childrens’ syntactic

growth. From an exemplar-theoretic perspective both the Childers and Tomasello study and those

of Huttenlocher et al. provide evidence for emergent exemplar-sensitive syntactic development.

Other insights into emergent exemplar-based syntactic acquisition come from Savage et al.

(2003) who found that 6-year-old children, in a picture description task, could be successfully

primed both lexically and structurally for active transitive and passive sentences, which they argue

is an indication that these children have some knowledge of abstract structure. Children aged 3,

however, showed only lexical priming indicating that their language knowledge is more item based.

The performance of 4-year-old children lies in between and Tomasello (2006) argues that this kind

of result is evidence for the development of stronger and more abstract representations over time,

based on exposure to exemplars of particular structures.

Some of these studies which appear to indicate item-based gradual, and late, development
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of syntactic abstraction are not without their critics. Recent work by Bencini and Valian (2008),

which in contrast to (Savage et al., 2003) provided a familiarization phase with all nouns and verbs

used in the task to reduce cognitive load due to lexical lookup, suggests that “young” 3-year-olds

do indeed exhibit abstract priming (priming across sentences where content words are not shared)

with passives. Fisher (2002) argues that although a child might well be in possession of an abstract

understanding of what a verb is, this does not necessarily entail that the child should immediately

be willing to use any new verb in any sentence construction, one reason being that some verbs can

be employed both transitively and intransitively (and convey a different meaning) whereas others

operate in only one of these syntactic frames. In other words, conservative verb use does not

necessarily discredit arguments for early abstraction (but see Tomasello and Abbot-Smith, 2002,

for a refutation.)

Further recent work indicative of early syntactic abstraction includes Gertner et al. (2006),

who found that children as young as 21 months old used word order to interpret transitive sentences

containing a novel verb, and demonstrated knowledge of the link between subject and agent, and

object and patient (see also Fernandes et al., 2006). Conwell and Demuth (2007) demonstrated

that children may well possess an abstract understanding of the dative alternation and can use it

productively under certain experimental conditions.

This ongoing debate concerning the nature of children’s early syntactic representations is

significant in that it highlights the importance of exemplar- or item-based learning and sensitivity

to frequency and distributional factors in language acquisition, despite the fact that a common

consensus has not necessarily been reached with respect to rate of development and indeed whether

or not abstract syntactic categories are an innate part of the language acquisition system. Fur-

thermore, the evidence for sensitivity to input and the gradual emergence of abstraction provided

in some of the papers above motivates the use of thresholding in the exemplar model presented in
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section 3 and the use of representational units rich in distributional information.

However, exemplar effects are not limited to the domain of child language acquisition. Sen-

sitivity to frequency and distributional factors is also found in adult language.

Exemplar-theoretic syntax in adults

Considerable evidence exists in the literature on adult language use in support of Exemplar

Theory. For example, eye-tracking experiments provide additional evidence with native speakers

attending to a word for less time if it is the final word in a frequent formulaic sequence (e.g.

an idiom or well known phrase) than a non-formulaic sequence (Underwood, Schmitt, & Galpin,

2004). Further evidence is also found in reaction time experiments. In an experiment by Bod

(2000) subjects had to decide, as quickly as possible, whether or not a given string was an English

sentence. Bod found that high-frequency sentences received faster reactions than low-frequency

sentences and concludes that frequent sentences must be stored in mind.

Psycholinguistic data from the adult priming literature offers further potential evidence for

storage and use of structural exemplars in adults. Bock (1986) and Bock and Loebell (1990) found

that speakers, when repeating prime sentences followed by descriptions of target pictures (seman-

tically unrelated to the primes) exhibited an increased tendency to produce an active description

having heard an active prime, a passive description after a passive prime, or a prepositional-dative

description after a prepositional-dative prime. Pickering and Branigan (1998) discovered syntactic

priming effects in a written sentence completion task. They report that priming can take place

regardless of whether or not the verb is shared between the prime and the target, that the mag-

nitude of priming increases with the overlap between prime and target, and that priming occurs

even across different word forms of the verb between prime and target. Though one might argue

that these results might be more indicative of the activation of a more abstract representation, it

is important to note that Pickering and Branigan found a considerable increase in priming when
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the prime and target overlapped. Hence it is possible that there might be some sort of interaction

between exemplars and abstract representations at play here (this is, after all, adult data, and

hence post-acquisition, so abstract representations are to be expected). Chang et al. (2000), citing

evidence for persistence of priming over intervening sentences (Bock & Griffin, 2000), and over time

(Saffran & Martin, 1997), argue that this persistence is evidence that structural priming might well

be a form of implicit learning as the durations involved mean that neural activation cannot be the

only mechanism involved and some longer-term change to the production system is taking place.

Chang et al. corroborate these persistence findings using a computational model (see below). A

detailed review of considerable additional research into human sensitivity to word frequency can

be found in (Jurafsky, 2003).

Given the growing and significant body of evidence for exemplar storage and sensitivity to

exemplar frequency in both children and adults, the next area to briefly examine is analogy-based

classification over exemplars.

Formal and informal models of exemplar effects

From the perspective of modeling, to date one of the most formally elaborated approaches

is the Data Oriented Parsing (DOP) model (Bod, 2006). According to the DOP approach each

exemplar corresponds to the syntactic structure of a perceived utterance. On presentation of a

novel utterance the DOP model employs 1) decomposition operations to split the utterance into a

set of fragments, 2) composition operations for recombining fragments to produce an analysis of the

utterance, and 3) a probability model which indicates how the probability of a new utterance and its

meaning is arrived at on the basis of its fragments’ frequencies. Interestingly, the k nearest-neighbor

and radius-based approaches typically used in exemplar-based phonetics research to compare novel

stimuli to extant exemplars are absent in the DOP model which captures productivity by means of

a substitution process involving categories of the same type in similar phrase-structure locations.
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The model presented later in this article, however, demonstrates how local grammatical knowledge

can be implicitly acquired based on distributional data and a radius-based similarity measure.

Other exemplar approaches to aspects of language acquisition have used connectionist meth-

ods. Elman (1990) trained a simple recurrent network (SRN)1 to predict the next item in an input

sequence generated by a grammar capable of generating 2 and 3 word sentences. Learning took

place purely on the basis of distributional information, no semantic or category label information

was provided to the network. In related work, Morris et al. (2000) employ a SRN and a small

vocabulary to attempt to map sequences of words to semantic roles, e.g. agent, patient, experiencer,

percept. The model was trained on a variety of sentence types and was then tested on the basis of

two systematic gaps in the training data. The model failed to generalize in cases that are also very

rare in parental input but generalized well in cases of synergy of syntactic constructions around the

gap. Evidently, learning occurred in accordance with exemplar-theoretic predictions and on the

basis of distributional information.

Other connectionist work includes Chang and colleagues (Chang, 2002; Chang, Dell, & Bock,

2006) who, building on earlier work (2000), developed a dual-path model2. This model comprises

two pathways for influencing word production. The first pathway is a feed-forward network respon-

sible for mapping from the message to the lexicon. The message consists of concepts and event

roles (e.g. transitive agent), and the bindings between them (represented as fast-changing weights).

The second pathway is an SRN responsible for sequence prediction. Both pathways converge at

the model’s output layer where words consistent with the intended message are produced. This

1An SRN is a form of artificial neural network with the addition of a set of context units which are employed to

maintain a memory of the hidden units’ previous values, allowing the network to perform sequence-prediction, i.e.

predicting a word given the previous word.
2This dual path consists of a meaning system and a sequencing system and is not to be confused with the multi-

level architecture proposed in this paper. The two paths of the multi-level architecture correspond to units at different

levels within the same system. See section 2.
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model was trained on message-sentence pairs (adapted to prime-target pairs) and employed in a

structural priming test. The model produced significantly more target structures (actives, preposi-

tional datives) when preceded by a prime of the same structure than with primes of the alternative

structure and exhibited persistence of priming over intervening sentences.

Chang et al. argue that the mechanism of priming is the same error-based learning (i.e.

incremental learning achieved by exploiting the difference between a predicted output and a target

output) that is used to acquire language in the first place and that the structural representations

that are primed emerge from the interaction between the learning algorithm and the model’s dual-

pathway architecture and role-concept bindings. Consequently, they applied the model to the

debate referred to above concerning the understanding of the transitive construction in children

younger than 3 years of age. In the production case the model’s ability to produce accurate novel

transitives emerged over time as it learned from experience with sentences with real verbs, and

coincided well with results found by Tomasello (2000). In the preferential looking case, in order

to mimic that paradigm, the model has to make a choice between two form-meaning options (one

of which is a mismatch). The model learns to do this considerably earlier (before 4000 learning

epochs, or earlier than the model’s second birthday) than it can produce novel transitives, again

in keeping with the literature, this time for preferential looking experiments. Hence, Chang et al.

argue that the model incorporates features of both late and early-syntax approaches, the argument

being that while abstract knowledge emerges over time, early representations are sufficient to make

choices between two interpretations. The model presented in this paper focuses on the impact of

distributional factors in acquiring syntax – as opposed to the semantic factors that Chang et al.

address. It is also novel in that it directly tests judgments on grammatical and ungrammatical

sentences.

From the perspective of Exemplar Theory each of the computational models described above
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demonstrates the learnability of syntactic properties on the basis of distributional information,

strongly motivating an exemplar-theoretic account of language acquisition. The model presented

in this article seeks to do likewise but uses rich exemplar representations and the invocation of

constituency interaction to do so. In addition the same model proves useful at the phonetic level

too.

Formal computational models aside, Abbot-Smith and Tomasello (2006) hold the view that

comprehension of an exemplar must, minimally, result in a change in its representation (even if

this is a simple recording of frequency). Furthermore, they also propose that frequent summing

over mutual similarities of a particular cloud of exemplars is highly likely to result in a permanent

modification to the representation which is “in some way equivalent to the formation of some kind of

more abstract representation” (Abbot-Smith & Tomasello, 2006, p.282). The hybrid categorization

model which they propose allows for exemplar learning and retention but also offers an abstraction

mechanism. It is important to note that while Abbot-Smith and Tomasello posit an interesting

potential account of acquisition no formal model is provided.

This section has synopsized usage-based research from the literature on child and adult

language acquisition and use and outlined computational approaches aimed at modeling some of

the phenomena found. The next section undertakes a similar review of the relevant literature for

phonetics.

2. Exemplar-theoretic Phonetics

Underpinning research into exemplars in speech production and perception is the general

idea that encountered items (segments, words, sentences etc.) are stored, rich in phonetic detail,

in memory, along with extra-linguistic information. These exemplars are categorized, on the basis

of their similarity to extant stored exemplars (using a variety of metrics), into clouds of memory

traces with similar traces lying close to each other while dissimilar traces are more distant.
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Johnson (1997) offers an exemplar-based attention-weighted k nearest-neighbor model which

successfully treats aspects of vowel perception, sex identification and speaker variability, crucially

without employing the traditional notion of normalization. Other informative research includes

Pierrehumbert’s model of lenition, entrenchment, and neutralization in diachronic language change

in the context of a perception-production loop (Pierrehumbert, 2001). At the core of her model

is the idea that exemplars have a resting activation level, with exemplars encoding frequent and

recent percepts having higher resting activation levels than exemplars encoding infrequent tem-

porally distant percepts. Classification of a new exemplar is a function of its similarity to stored

exemplars, where the labeling with the highest probability is computed, given the labeling of the

stored exemplars in the neighborhood. Pierrehumbert’s model uses a fixed size neighborhood (see

section 6). The strength or activation of an exemplar is a function of its frequency and recency

within the exemplar space.

Further noteworthy work includes Bybee (1999; 2006) who presents three convincing observ-

able phenomena which augment the argument for exemplar storage at both the phonetic and syn-

tactic levels, including: a) Reducing Effect – a higher rate of phonetic reduction for high frequency

words than mid and low frequency words, the rationale being that the articulatory representation

of words and word sequences is composed of neuromotor routines whose execution becomes flu-

ent with repeated use, b) Conserving Effect – greater entrenchment of morpho-syntactic structure

for high frequency sequences because the high frequency of a sequence strengthens its memory

representation and facilitates its access as a single unit, c) Autonomy – high frequency complex

morphological forms can lose their internal structure thus becoming in some sense independent of

their etymological roots, e.g. the grammaticalization of the meaning of the sequence be going to

into a future or intentional form. The multi-level model presented below is to some extent capable

of modeling each of these effects.
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Additional relevant research concerning exemplars and frequency of occurrence, important

to the work presented here, concerns evidence for syllable storage in a mental repository, and

dual-route production evidence.

Levelt and colleagues (1994; 1999) posit that frequently occurring syllables are stored in the

form of learned motor programs in a phonetic mental syllabary. Such a syllabary facilitates ease

of production by enabling speakers to produce the majority of their speech by using these motor

programs which are essentially prefabricated units. The dual-route concept posits a direct and

indirect route for unit (e.g. syllable) production, where the indirect route constitutes production

via assembly, and the direct route constitutes retrieval from the syllabary of syllable production

templates. Furthermore, the syllabary also stores coarticulatory effects since most coarticulation is

syllable-internal. Indeed, high-frequency syllables, which are presumed to be stored in the syllabary,

have been shown to exhibit more coarticulation than rare syllables (Whiteside & Varley, 1998),

which are assembled online from the gestural specifications of smaller units, i.e. concatenated as

a sequence of segment-level specifications. This online beads-on-a-string assembly occurs for rare

syllables because the sequence of segments is not represented in the syllabary as a motor program,

i.e. there is no gestural specification for the sequence as a whole in the phonetic syllabary that

can act as a production target. Whiteside and Varley’s research focuses on speech produced by

patients suffering from apraxia of speech (AOS) (Varley & Whiteside, 2001). These patients produce

speech which lacks many coarticulation effects typical for nonpathological speech and has been

characterized as resembling allophone synthesis, that is it has a somewhat concatenative quality.

Whiteside and Varley (1998) argue that features such as inconsistent articulatory movements,

increased durations, and reduced gestural overlap found in speech of this kind, are indicative of

disruption of stored movement gestalts. One possible reason is that AOS patients have a (gradient)

loss of access to these learned motor programs for high frequency syllables. Consequently, AOS
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speakers are forced to produce speech using indirect means. Thus, loss of access to a high frequency

syllable gestalt would necessitate sub-syllabic assembly, whereas in nonpathological speech the

syllable would be retrieved directly from the syllabary. Varley and Whiteside (2001) proposed a sub-

syllabic route model, which predicts correctly that AOS speakers are disfluent without producing

segment-level speech errors. Crucially, the model also predicts that error patterns would not be

affected by syllable structure.

Further significant research in support of dual-route access to exemplars can be found in a

neuroimaging (fMRI) study by Mayer et al. (2003). In their study they seek to establish differ-

ing brain activity patterns, as well as differing localizations of active neural clusters, depending

on whether the direct or indirect routes are exploited. Subjects read bisyllabic nonsense words

constructed from very high frequency (hf) and very low frequency (lf) syllables in all four possible

combinations (hf-hf, hf-lf, lf-hf, lf-lf). High frequency syllables evoked activation patterns in the left

temporal cortex that were absent in the case of low frequency syllable production. However, these

activation patterns always co-occurred with activation patterns in the left motor and pre-motor

cortices, areas known to be correlated with segmental assembly. This result might well indicate

that both the direct and indirect routes operate in parallel and are in competition for the most

efficient coverage of the phonological target sequence.

Building on this idea that stored exemplars act as production targets, or plans of articulation,

Schweitzer and Möbius (2004) note that if this is the case then speakers should have a significant

number of exemplars for high frequency syllables, which would then act as a production target

region, and a small or negligible number of exemplars for low frequency syllables. Consequently

they argue that low frequency syllables would have to be computed online from exemplars of their

constituent segments. They predicted, and observed, greater variation in duration for frequent

syllables than for infrequent syllables when looking at the relationship between syllable duration z-
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scores (measure of standard deviations from the mean) and the duration z-scores of the constituent

segments in a corpus of German. The prediction that frequent syllables would exhibit greater

variation in duration is based on the intuition that these syllables would occur in a larger number

of contexts than for infrequent syllables and that there is hence a larger opportunity for context-

influenced variability. It is worth noting that while Bybee offers no formal definition of high, mid,

or low frequency, the Schweitzer and Möbius experiments were performed using frequency bins

derived from multivariate clustering by Müller et al. (2000) (as indeed were the fMRI experiments

performed by Mayer et al., 2003). The research presented here, using the same data, employs a

computational model which goes some considerable way to corroborating this effect.

Exemplar Theory has enjoyed much growth in both the phonetic and syntax domains (Pier-

rehumbert, 2001; Croot & Rastle, 2004; Bod, 2006; Bybee, 2006), yet little has been attempted,

much less achieved, with respect to unifying research from both fields. However, Hay and Bresnan’s

(2006) combination of the literatures represents a noteworthy exception. In their examination of

the phonetics of the common phrase giving a hand, they sought to establish evidence for within-

word variation when a word occurs in a different syntactic or semantic location. They found that

different constructions can indeed affect phonetic change, and that frequent phrases appear to be

the most advanced in the sound changes examined. Most notably their research appears to indicate

that phonetically detailed phrases may well be stored in memory. This is particularly noteworthy as

it demonstrates the utility of combining research from both syntax and phonetics. Building on this

idea, this paper presents a multi-level exemplar-based model of constituency interactions across

both linguistic domains, which the authors believe represents a significant first step towards a uni-

fied account of exemplar-theory. Aspects of the research presented here can be found in (Walsh,

Schütze, Möbius, & Schweitzer, 2007; Walsh, Schütze, Wade, & Möbius, 2007; Schütze, Walsh,

Wade, & Möbius, 2007), and the present article unifies and builds upon this earlier work. The
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instantiation of this model for the explanation of syllable frequency effects presented in section 4,

combined with the instantiation of the model for grammaticality acquisition in section 5, provides

insights into how a unified account might be achieved. These are discussed in section 6.

3. The Multi-Level Exemplar Model

Given the evidence for the mental syllabary and dual-route production pathway, combined

with the syllable frequency effects discussed in section 2, the instantiation of the model presented

in section 4 seeks to provide, through simulation and experimentation, corroborative evidence

for these phenomena, and, in particular, offer possible explanations for why the syllable frequency

effect reported in Schweitzer and Möbius (2004) might occur. Similarly, given the wealth of evidence

suggesting both child, and indeed adult, sensitivity to lexical and structural frequency in language

presented in section 1, the model offered below aims to both formalize the potential power of

local-context distributional information in a grammaticality judgment task, and to demonstrate

how rich graded exemplar representations are superior to standard categorical representations in

judgments in this same task. Furthermore, to the authors’ knowledge no formal exemplar model

which captures both phonetic and syntactic phenomena currently exists, and the model outlined

below attempts to bridge this gap.

The architecture of the model is shown in Fig. 1. The model has 4 components and two

databases, and it receives input from a generation/perception interface.

• Generation/perception interface. This interface transmits a (possibly underspecified)

input (“input” in Fig. 1) that serves as stimulus for the model. It is either instantiated by a speaker

different from the one being modeled (as when grammaticality judgments are modeled) or as the

part of the cognitive system that determines which words or phrases are to be generated next. For

example, when applying the model to syntax the unit exemplar xyz is a perceived sequence of words

the comprehension or parsing of which is then modeled as shown in Fig. 1. Similarly, in the case of
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phonetics, xyz corresponds to an abstract representation of the articulatory gestural specification

of the next syllable to be produced.

• Similarity calculator. The similarity calculator (not shown in figure) takes a stimulus

and a database of exemplars as input and identifies the subset of exemplars in the database that

have a minimum similarity3 with the stimulus. It returns this subset along with the individual

similarities that were calculated. It also returns the level of activation, which in the simplest case

is the number of similar exemplars that were found (or activated by the retrieval).

• Exemplar database on the unit level. This database is the repository of unit exemplars

(“Unit exemplar database” in Fig. 1).

• Exemplar database on the constituent level. This database is the repository of

constituent exemplars (“Constituent exemplar database” in Fig. 1).

• Parser and composer. The parser parses a unit into its constituents (upper right arrow

marked “Parse”) and the composer composes a sequence of constituents into a unit (bottom arrow

marked “Compose”). These two components are different for each of the instantiations of the model.

For example, a stimulus sentence is parsed into individual words before testing against the model’s

exemplar memory; or, from the phonetics perspective, when composing segments into a syllable, the

articulatory plan for the syllable is the concatenation of the articulatory plans of the segments. As

a result, the duration of the syllable is equal to the sum of the durations of its constituents. Clearly

the ability to compose/decompose a syllable from/to its constituent segments, or to parse a string

into a sequence of words, is an acquired skill. Parsing, segmentation and composition constitute

complex research areas in their own right and are therefore assumed in the current instantiation of

the model.4

3This similarity is a parameter. In general, the value of this parameter will be different for different databases.

See section 6 for discussion.
4Note that, for the syntax acquisition model, it is not assumed that the input is syntactically parsed. Rather, the
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• Decision component. Let α be the activation the input receives in the unit exemplar

database as calculated by the similarity calculator. If α is above a threshold θ, then perception or

production will be based on the set of similar units found by the similarity calculator in the unit

exemplar database. If the stimulus does not receive sufficient activation in the unit exemplar model,

then perception/production is based on the sets of similar constituents (one set per constituent)

found by the similarity calculator in the constituent exemplar database.

Table 1 shows how the model is instantiated in the phonetic and syntactic models. The

following sections describe these instantiations in more detail.

The methodology in this paper is to model the input data in a particular linguistic scenario

(articulation and language acquisition), present the model in Fig. 1 with these input data, and then

compare the predictions of the model with the outcome that was observed in the linguistic scenario

with a view to establishing proof-of-concept. These simulations are then followed by experiments

where the model is presented with actual linguistic input data, rather than modeled data, in order

to evaluate the model concept and investigate robustness.

4. Modeling syllable duration variability

In an exemplar model of speech production, exemplars serve as targets or plans of articulation.

Recall that Schweitzer and Möbius (2004) posited that speakers should have a significant number

of high frequency syllable exemplars acting as production target regions, and a small or negligible

number of exemplars for low frequency syllables. On this basis they argue that low frequency

syllables would be computed online from exemplars of their constituents. They correctly predicted

assumption is that a capability to parse a sentence into words has been acquired. This also is a difficult acquisition

problem, but the assumption that words can be largely identified correctly before syntax is acquired is plausible. For

example, the units the child produces in the one-word stage are correctly identified words.
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greater variation in duration for frequent syllables than for infrequent syllables.5 One of the aims

of the research presented in this article is to elucidate, using an exemplar model, the underlying

mechanism which accounts for the effect found by Schweitzer and Möbius. In other words, is

it possible to account for the variation in syllable duration across syllable frequency categories

(frequent and infrequent) using a dual-route computational process? The model is intended to

represent a competition between syllables accessed as units and those that are produced as a result

of accessing the exemplar clouds of their constituent segments. The assumptions and predictions

of the model are as follows:

• The model assumes the ability to parse a syllable into its constituent segments. Similarly,

the model assumes the ability to compose a syllable from segments.

• The model assumes, on the basis of the evidence discussed above, the possibility of a dual-

route production mechanism where syllables and segments are stored and accessed separately and

operate independently.

• The model predicts a thresholding effect whereby until a particular threshold is reached,

through frequent exposure to co-occurring segments, the duration of a particular syllable will reflect

the sum of the durations of its constituent segments. Once the threshold is passed, the constituent

segments will tend to behave more as a single unit, i.e. a syllable.

General Procedure

The model is initially seeded with segment exemplar duration values using the mean duration

values of the segments in the corpus (discussed below). It is important to note that these mean

values are calculated from the corpus as a whole, not merely from the duration of segment tokens

5Note that Schweitzer and Möbius (2004) found that z-scores of frequent syllable durations were more variable

than z-scores of infrequent syllable durations. This is interpreted here to mean that frequent syllables are more

variable in duration than infrequent syllables.
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found in the pertinent frequency bins. It is also worth noting that the initial seeding of the model,

using mean duration values, will impart an initial bias to the model. However, this is cognitively

plausible as an infant must, after all, have a first perception of each segment. The decision to use

a mean value is simply to initialize each segment cloud with what could be considered a typical

or plausible exemplar. Furthermore, this cognitively plausible initial bias is not equivalent to

prototypicality as exemplar selection in the model is random. This is also plausible because no

exemplars (segments or syllables), initially at least, should appear to have a better “fit” to a given

context since an infant has limited contextual experience, i.e. there should be no preferential or

biased selection, because an infant does not “know” what is a good or bad exemplar. However,

over time, as a cloud acquires more exemplars the denser parts of the cloud will be more likely to

be “activated” simply because of the nature of the distribution and the random selection, i.e. an

exemplar from a denser part of an exemplar cloud is more likely to be selected than an exemplar

lying in the outskirts under random selection.

On each iteration a syllable, either frequent or infrequent, is selected for production accord-

ing to two competing production pathways known as a composite production pathway and a unit

production pathway, in keeping with the dual-pathway concept discussed above. According to the

composite pathway a duration for each of the syllable’s constituent segments is randomly selected

from their respective exemplar clouds and random noise is added, to reflect motor/articulatory

perturbations. This syllable is known as a composite syllable. Its duration is the sum of the dura-

tions of its constituent segments. In parallel, a nominally identical unit syllable is also selected for

production. A duration for this syllable is randomly chosen and modified by noise, commensurate

with the duration of the syllable, again to reflect motor/articulatory perturbations. The unit syl-

lable has an associated activation based on the density of its cloud. If the unit syllable reaches a

certain minimum activation it is chosen for production, otherwise the composite syllable is chosen.
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The winner is then produced, perceived, and stored. The next two simulations employ this general

procedure using a) modeled data, and b) the same corpus data used by Schweitzer and Möbius

(2004), in order to reproduce their syllable variability findings.

The addition of random noise to reflect motor/articulatory perturbations is not unreasonable,

at least as a first approximation. To add noise determined by examining a corpus of adult speech

would equate to modeling adult productions in infant speech. Given the inexperience and the

articulatory difficulties that infants have, noise introduced by an infant is unlikely to correspond

well with noise produced by a physiologically mature and vastly more experienced adult. It would,

of course, be desirable to have a more faithful model of infant production noise, but at this point

reasonably constrained random noise is employed.

From a different angle one might argue that random noise is inadequate because production

factors that influence the duration of one segment are likely to have a similar influence on other

segments within the same structural unit. Speaking rate is an obvious example of such factors.

Whereas it seems plausible to assume directional invariance, i.e. all segments are shortened at higher

speaking rate and lengthened at lower rates, albeit by different proportions, there is evidence for

complicated interactions at the foot level. For instance, compensatory shortening of unstressed

syllables is typically observed in stress-timed languages, yielding a reduction of syllable durations

as a function of an increasing number of syllables in the foot (e.g., Fowler, 1977, for English;

Kohler, 1983, for German; and Eriksson, 1991, for Swedish). However, compensatory shortening as

well as foot-final lengthening does not seem to occur at high speaking rates in German (Wagner,

2008), indicating that the effects of speaking rate within the foot structure are not necessarily

unidirectional.

What happens to segment durations as a function of changes in speaking rate is not well

understood. Only very few quantitative studies have investigated the effects of speaking rate on

21



segmental durations within the syllable. The relative lack of success of rhythm models based on

the relation between consonantal and vocalic intervals, which is unstable under changes of speaking

rate (Dellwo & Wagner, 2003), may be taken as evidence for a non-uniform effect of speaking rate

on different phone classes within the same structural unit. Thus, it is quite possible that segments

belonging to the same syllable vary in their durations in opposite directions, whereas the syllabary

concept will of course assume that segments in a syllable unit will co-vary in the same direction.6

Simulation 1 - modeled data

Stimuli. Stimuli were syllables of the form CVC where C was one of five consonants and V

one of five vowels (for a total of 125 syllables). For each segment (phone) the acoustic properties

are modeled as a randomly generated two-dimensional vector, and the duration value stored in

a single dimension. The similarity of two segments or constituents was computed as the sum of

the similarities of their acoustic vectors and their durations. For vector similarity, the cosine was

employed, for duration similarity an exponential transformation of difference:

sim(#v, #w) =

∑

i viwi
√

∑

i v
2
i

√

∑

i w
2
i

sim(x, y) = e−α(|x−y|)

where x and y are durations and α = 0.05. α was chosen to give good sensitivity for typical

lengths of consonants and vowels. Durations of syllables in the seed set were chosen to be 280 ms,

6Nevertheless, the authors acknowledge the possibility that the composition of segments under particular produc-

tion factors might vary their duration in the same direction, possibly yielding higher variability in infrequent syllables

than frequent ones, however this area has been little examined in the literature, and related work (coarticulation ef-

fects) by Benner et al. (2007) found a tendency towards stronger coarticulation and greater coarticulatory variability

in high-frequency syllables than in low-frequency ones, which is compatible with their hypothesis (related to ours)

that high-frequency syllables are retrieved from a syllabary and are less resistant to coarticulation than syllables

assembled from segmental specifications.
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distributed in a ratio of 1:2:1 over the three constituents CVC. These numbers were chosen because

70 ms is a typical duration for a consonant and 140 ms is a typical duration for a vowel. The 125

syllable types were randomly assigned to either the frequent or the infrequent subclass.

Procedure

The unit exemplar database was seeded with 500 syllables. It is important to note that in

all instantiations of the model, when a unit is added to the unit database, its constituents are

simultaneously added to the constituent database, to reflect the fact that the segments (and words

in syntax) are perceived too.

A total of 5000 iterations of a production-perception loop were performed. Each iteration

consists of randomly picking one of the 125 syllable types. The probability of selecting a frequent

type is 100 times that of an infrequent type. For the constituents of both infrequent and frequent

syllables, acoustic vectors are generated (slightly perturbed, using uniform noise, from the canonical

vector of a consonant or vowel to reflect variation in (planned) articulation). The syllable’s and

constituents’ nearest neighbors in the unit and constituent databases respectively are retrieved,

within a fixed radius. If activation in the unit database is below the threshold θ (i.e., there are

fewer than θ exemplars in the cloud), then the unit cloud is discarded, and the three neighborhoods

in the constituent database are employed instead. The target duration of an exemplar is inferred

to be the average duration of the members of its cloud. Finally, random noise proportional to the

computed duration is added. For radius parameters and for θ, values were selected that separate

frequent and infrequent syllables (see section 6).

After the syllable with the inferred duration has been produced, it is added to the exemplar

database. This part of the procedure models a production-perception loop, either on the individual

or the community level: every produced exemplar becomes a perceived exemplar after its production.

The final phase of the procedure consists of probing the model, in an identical manner to the
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initial 5000 iterations, with 10 syllables of each of the 125 syllable types. The standard deviation

for the syllable type is then computed on just this sample of 10 per syllable type. In this phase,

syllables and their units are deleted after each probing to make sure that infrequent syllables do

not change their status to frequent in the probing phase.

Results

Fig. 2 is a cumulative histogram of 10 runs of the above experiment, corresponding to 1250

standard deviations. The model successfully simulates the finding of Schweitzer and Möbius (2004):

frequent syllables are more variable in duration than infrequent syllables. This result was significant

(p < 0.001, Welch Two Sample t-test on 1250 syllables).

The difference in variation arises from the interaction between the two submodels. Frequent

syllables have enough density, so that their duration is computed in the unit model, with noise

added that is proportional to the length of the syllable. Infrequent syllables are compositions of

constituents that are computed in the constituent model, each with independent noise. Given that

each composite syllable is composed of segments to which noise has been added, it is likely that

the net effect on the syllable duration will be small as the addition of noise to each segment will to

some extent result in a cancelation effect. In other words one segment might grow longer whereas

another grows shorter. Over many iterations of the production-perception loop, frequent syllables

become more variable in duration whereas the variability of infrequent syllables does not change

much. Given the success of this simulation using artificial data the next phase is to apply the model

to the data in the corpus employed by Schweitzer and Möbius.

Simulation 2 - corpus data

The corpus is a single-speaker speech database for unit selection speech synthesis, recorded

by a professional male speaker of German, and contains approximately 160 minutes of speech (2601
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utterances with 17,489 words, 33,800 syllables and 94,300 segments). The corpus was manually

annotated on the segmental, syllabic, word and prosodic levels. In their experiments Schweitzer

and Möbius extracted the 326 most frequent syllable types, each with more than 20 tokens. In

total this accounted for 22,638 syllable tokens, covering approximately 67% of the corpus. These

syllable types were matched against categorization criteria for frequency and infrequency based on

analysis by Müller et al. (2000), the criteria being that very infrequent syllables have a probability

of less than 0.00005 and very frequent syllables have a probability in excess of 0.001. This further

refinement yielded 114 very frequent and 16 very infrequent syllable types. Using identical frequency

bins to those employed by Schweitzer and Möbius allows for comparison between their results and

the results of the experiment detailed below.

Procedure

As in the first simulation, a composite and unit syllable are selected for production in parallel.

In this particular simulation however, as the main topic of interest is the duration dimension,

accurate categorization of the syllable is assumed and the acoustic properties are not investigated.

Given the balanced nature of the corpus the syllables modeled here are of a variety of forms,

including CV, CVC and more complex structures. For the purposes of illustration the model is

discussed from the perspective of CVC production. Fig. 3 and Fig. 4 provide an illustration of the

modus operandi of the model.

Initialization. The model is initially seeded with exemplar duration values using the mean

duration values of the segments in the corpus. The unit exemplar database is initially seeded with

a syllable whose duration equals the sum of the values of the initial constituent segment seeds.

In other words, the model is seeded with a unit syllable, and constituent segments, of plausible

duration (Fig. 3 top panel).
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On each iteration of the model program a syllable (frequent or infrequent) is selected for

production and dual-route competition takes place as follows.

Composite selection. According to the composite pathway each iteration of the model selects

a CVC syllable for production. A duration is then randomly selected for each constituent segment

from their respective duration clouds (Fig. 3 middle panel). Random noise is then added to each

duration value as follows (where erd corresponds to random production noise commensurate with

the duration of an extant exemplar, e.g the consonant segment in onset position C1ex, which is

added to the duration of this exemplar):

C1dur = C1ex + erd (1)

Vdur = Vex + erd (2)

C2dur = C2ex + erd (3)

The net effect is that each segment is either lengthened or shortened (by up to 5%)7 depending

on the effect of the noise. Once again introduction of noise is intended to reflect the high degree of

variability in speech production. The duration of the composite syllable is the sum of the segment

durations.

CompSylldur = C1dur + Vdur + C2dur (4)

Unit selection.

In parallel, according to the unit pathway, with each iteration of the model a unit syllable

nominally identical to the composite syllable is also selected for production. The duration of the

unit syllable is selected randomly and noise is added in a similar fashion to that described for

the segments. As with the segments it is important to note that the level of additional noise is

commensurate with the size of the unit (Fig. 3 middle panel).

7Similar results were achieved using less conservative noise estimates.
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Competition, production, and storage.

Thus at this point in the execution of the model there are two competing syllable hypotheses,

one composite and one unit. The determining factor in deciding between the two is the level of

activation α of the unit syllable. In this simulation the model initially has one exemplar of a syllable

stored as a unit. Thus the unit syllable activation is 1.

In the event that the unit syllable possesses an α value less than a unit-threshold θ, the

durations of the composite syllable’s constituent segments are stored in their respective duration

clouds, and the composite syllable’s total duration is stored in the duration cloud of its unit syllable

equivalent. This represents the production, and perception, of a syllable using its constituent

segments rather than accessing the syllable as a unit stored in exemplar memory. That is, the

indirect segmental assembly route is chosen (Fig. 3 bottom panel, assuming a θ value greater than

1, since α=1 in this example). This indirect route is taken until the threshold is exceeded (Fig. 4,

top and middle panels). On the other hand, if the activation of the unit syllable is greater than the

threshold, then its duration is stored in its exemplar cloud and its duration mass is divided into the

duration clouds of its constituent segments in a manner corresponding to their typical influence on

syllable duration (Fig. 4, top, middle and bottom panel). This is achieved through the following

normalization process:

Segi weight =
Segi mean

∑n
j=1 Segj mean

(5)

Segi duration = UnitDuration ∗ Segi weight (6)

where n corresponds to the number of segments in the syllable. The reason for the distribution of

the unit syllable’s duration mass to the segments which would normally compose it (despite the

fact that it is operating as a unit) is that intuitively, from an exemplar-theoretic perspective, the

production/perception of a syllable should result in greater activation of that syllable’s exemplar

cloud, and in greater activations of the clouds of the segments that can be perceived within the
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syllable. The size of all the exemplar duration clouds increases over multiple iterations of the model.

Experiment

The algorithm described above was executed to yield n productions per syllable based on

the prior syllable probabilities presented in the previous section. This was performed with a view

to establishing a critical mass of durations which would facilitate inspection of the model.8 Once

these n productions per syllable were complete a further 500 inspection iterations were performed,

per syllable, using the enlarged clouds provided by the pre-inspection execution. In other words

the model was forced to produce, on the basis of duration results yielded by the pre-inspection

execution, 500 unit syllable tokens per syllable type (across both frequent and infrequent types),

and 500 composite syllable equivalents. The threshold θ was manually set to 100 (see section 6).

As with the first simulation, these inspection durations did not enlarge the original pre-inspection

duration clouds, that is the resulting duration clouds for the frequent and infrequent syllables were

stored separately. Otherwise, if syllables produced in the inspection phase were stored with the

pre-inspection syllables this could entail that an infrequent syllable could acquire enough mass to

become frequent and the inspection would be unreliable. The purpose of the inspection phase is to

determine what the trained model will produce, the model itself should not be interfered with.

The duration z-score of each syllable token was calculated and plotted against the mean z-

scores of the involved segments in the composite equivalent, where the z-score of a token (syllable

or segment) is given by:

z =
d − µ

σ
(7)

8An inspection of the model by random generation of tokens according to their prior probabilities is computa-

tionally expensive and unnecessary. For example, if the most infrequent syllable has a probability of 0.0001, then in

order to produce 100 tokens to establish a critical mass, a corpus of millions of tokens would have to be generated

and most of the data would not be relevant to the experiment.
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where z is the z-score of the token, d is its duration, µ is the mean duration of the token’s type and

σ is the standard deviation of the duration of the token’s type.

A linear regression model was fitted to the data, with the duration z-scores of the syllable

tokens acting as the dependent variables. Aggregate results are presented for both frequent and

infrequent syllables in Fig. 5.

Results and Discussion

As a function of the fact that the infrequent syllable is not produced in sufficient numbers

to exceed the threshold, the z-scores of each infrequent syllable will, to a significant degree, reflect

those of the constituent segments as the durations in the syllable cloud will essentially be the

durations of composite syllables. Given that each composite syllable is composed of segments to

which noise has been added, it is likely that the net effect on the syllable duration will be small as

the additions of noise to each segment will to some extent cancel each other out. In other words

one segment might grow longer whereas another grows shorter. Overall the standard deviation (on

which z-scores depend) of the composite syllable will not be that large, and, since the duration cloud

of an infrequent syllable relies heavily on composite syllable durations the standard deviations of

infrequent syllable durations will be similarly restricted. Hence the z-score of an infrequent syllable

will be quite well predicted by the z-scores of the syllable’s segments (highly significant correlation

between segment z-score and syllable z-score: F = 30,580, p < 0.001, t-test), as illustrated in the

linear regression model plotted in Fig. 5 (right panel).

The syllables of the frequent category however, exhibit greater variability (no significant

correlation between segment z-score and syllable z-score: F = 2.785, p = 0.095). This is due

to the fact that after a number of productions they possess activations greater than θ and hence

much of the durations in their clouds correspond to previous unit durations with added noise.

The noteworthy point here is that the noise is added to the syllable unit as a whole, not to its
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constituent parts. Thus there is no cancelation effect, and the syllable unit is more likely to vary

more significantly from the mean.

This result is in keeping with the results of the first simulation and the findings of Schweitzer

and Möbius (2004). Their results are illustrated in Fig. 6. What is particularly striking is that

the results for the frequent case in the current experiment (Fig. 5 left panel) appear to be noisier

than those established by Schweitzer and Möbius (Fig. 6 left panel). This is likely due to the

fact that, apart from the initial segment seeds, all the exemplars in the current model are the

result of self-productions and self-perceptions, i.e. the corpus is only employed for the purposes

of initialization and the exemplar clouds become denser on the basis of the model’s subsequent

productions. Of course this is somewhat limited as an infant will continue to perceive exemplars

other than its own. However, estimating how often an infant might perceive external exemplars

of a particular segment relative to perceptions of self-produced exemplars of the same segment is

problematic, and establishing reasonable estimates is currently being investigated. It is anticipated

that if satisfactory estimates can be arrived at, one would expect to see results for the more

frequent syllable case corresponding more closely to those found by Schweitzer and Möbius, as

the exemplar clouds would then represent a mixture of externally perceived and self-produced

exemplars. Nevertheless, it is important to note that the overall prediction of the model is borne

out.

Similarly, the results are in line with the dual-pathway theory posited by Levelt et al. (1999),

Whiteside and Varley (1998) and Mayer et al. (2003) among others. Employing the frequency bins

specified by Schweitzer and Möbius (2004) allows for evaluation of the current results in the context

of their findings. However, such frequency bins are not required for the model to work. For example,

a syllable with mid-range frequency should exhibit less variability than a high frequency syllable as

it would not have so many post-threshold exemplars in its syllabary. It would nevertheless exhibit
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more variability than an infrequent syllable which barely gets above threshold level activation.

In both simulations the same general competitive interaction model, operating across both

the unit and constituent levels, was employed. The next section demonstrates how the same model

can account for the development of local grammatical knowledge.

5. Modelling the acquisition of local grammatical knowledge

One of the basic tasks children master when acquiring a language is to distinguish between

grammatical and ungrammatical sentences. Rote learning is of limited help in judging grammati-

cality because of the productivity of language. This section demonstrates that emergent acquisition

of local grammatical knowledge can be modeled in the multi-level exemplar model via local gram-

maticality judgments which are formalized as activation of a sentence as a unit. When applying

the model in Fig. 1 to syntax acquisition, the input is a sentence. The sentence is processed as a

unit (left half of the figure) by searching the unit exemplar database (i.e., a database of sentence

exemplars) for similar sentences. In parallel, the constituent exemplar database on the right is

used to retrieve clouds of similar exemplars for the words (or constituents) of the sentence. Words

are shown as x, y, and z. If the sentence receives activation α in the unit exemplar database

that exceeds a threshold θ, then the syntactic structure of the input sentence is constructed to be

analogous to the syntactic structure of the set of similar sentences retrieved. For example, if for

the stimulus Peter loves coffee, the most similar retrieved sentences are Mary likes tea and John

craves chocolate, then the syntactic relationship between loves and Peter is construed to be similar

to that between likes and Mary and to that between craves and John. Analogously, the syntactic

relationship between loves and coffee is construed to be similar to that between likes and tea and

that between craves and chocolate.

On the other hand, if the sentence does not receive sufficient activation, then there are

no sentences that can be used to analogize the input stimulus to. In that case, the sentence is
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perceived as a concatenation of syntactically unconnected words, that is, as a sentence unspecified

with respect to grammaticality. The composition function merely joins the words into a sequence

and does not add any information about how the words relate to each other (e.g., that one word is

the object of another) since that information is not available due to insufficient unit activation.

This section illustrates how the model can handle grammaticality via local syntactic coher-

ence and, in a comparative experiment, demonstrates the benefits of employing exemplar represen-

tations over categorical ones. To begin, the challenge posed by the acquisition of local syntactic

patterns is discussed, followed by a motivation of the representation of words in the multi-level

exemplar model.

Difficulty of acquiring local syntactic patterns. What does it mean to possess a native-like

mastery of the grammar of a language? The key test of successful acquisition is productivity.

Memorization and successful retrieval from memory by themselves do not demonstrate that any

nontrivial learning has taken place.

There are several different aspects of syntactic productivity. At the most basic level, pro-

ductivity means the production of novel sentences, i.e., the ability to produce a sentence that was

never part of the input. Generative grammarians have traditionally focused on the most complex

form of syntactic productivity, the production of a (usually recursive) pattern of constituents that

has never been experienced; for example, the production of four levels of embedded relative clauses

if only up to three have been experienced. The acquisition of morphology is also closely tied to

the acquisition of syntax, but this paper will only be concerned with syntax. Finally, the ability to

infer the correct syntactic properties of new words is also a task that the learner of the syntax of a

language has to solve. For example, a native speaker of English knows that the word foobar in the

utterance the foobar in the bag is most likely a noun.

In this paper, the most basic form of syntactic productivity is addressed, the ability to distin-
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guish syntactic environments in which a word can occur from those that are not grammatical. In

the simplest case, this amounts to learning the part-of-speech patterns of simple English sentences,

e.g., of two-word sentences in the early stages of language acquisition.

All of these part-of-speech patterns are very frequent in the child’s input. If this input was

presented to a child in grammatically annotated form (indicating, e.g., that butter in give me the

butter is a noun), then the task of learning legal part-of-speech patterns would be a trivial task

of memorization. But since the child perceives words without labels, the acquisition of the correct

part-of-speech patterns of English sentences is a difficult task. Note also that simple heuristics like

If w1 and w2 are encountered in the same context c1, then that means that they can be substituted

for each other in any other context c2. are not viable. Simple heuristics fail because of ambiguity.

An example where the heuristic just given fails is w1 = fun, w2 = trouble, c1 = I’ve never had so

much , and c2 = That’s a really game. The sentences c1(w1) and c1(w2) are both grammatical,

but only c2(w1) is good whereas c2(w2) is not.

One of the major obstacles facing an exemplar theory of syntactic development is to account

for how a child begins by hearing syntactically unlabeled utterances, yet at some point becomes able

to infer what the syntactic properties of a particular word are and to then produce this word in novel

contexts, e.g., to use nutella in give me the nutella even though nutella was never experienced in

this particular context. When acquisition is completed, the child represents sentences in a partially

abstract representation that enables him or her to comprehend and produce novel combinations.

It is this process which this section of the paper attempts to explain.

A number of researchers have attempted, with considerable success, to model aspects of

language acquisition such as category learning (Elman, 1990; Redington, Chater, & Finch, 1998;

Mintz, 2003), the emergence of abstract syntactic structures and how they combine (Morris et

al., 2000), structural priming (Chang et al., 2006) etc. The syntactic instantiation of the model
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presented here differs in that it focuses both on mathematically and computationally formalizing

the idea of local grammaticality and on establishing the benefits of graded representations over

categorical ones.

Representation of words. The similar syntactic behavior of two nouns like coin and hen is

not directly apparent from their pronunciation or semantics. But an exemplar-theoretic account of

syntactic behavior requires a similarity measure where coin and hen are similar. Building on the

ideas described in (Schütze, 1995) (see also Schütze, 1992, and Schütze, 1993), the left-context and

right-context components of the representation of a given focus word are defined, where the left

(right) context consists of a probability distribution over all words that occur to the left (right) of

the focus word and the dimensionality of the distributional vector for each word is dependent on

the number of distinct words (or word types). For example, having experienced take coin twice and

drop coin once, the left context distribution of coin is P (take) = 2/3, P (drop) = 1/3. That is, each

word can be treated as comprising two half-words, a left half-word that characterizes the word’s

behavior to the left and a right half-word that characterizes the word’s behavior to the right. Thus,

the phrase the red hen would be represented as the six half-words: the l, ther, red l, redr , hen l,

and henr. Table 2 presents right context distributions for three half-words. Thus, for example

the probability that like is followed by people (according to some arbitrary corpus) is 0.0054. The

similarity between two half-word distributions is arrived at by calculating their cosine, thus, the

similarity measure used in the first phonetics simulation is employed here too.9

Before presenting formal definitions of exemplar-theoretic and category-based local syntactic

coherence and a comparative experiment, the following proof-of-concept simulation illustrates how

9The context distributions used here are first order in the sense that only directly observed neighbors are used.

For example, if noun w1 has only been experienced after the definite article and noun w2 has only been experienced

after the indefinite article, then the similarity of the left contexts of w1 and w2 may not be recognized in a first-order

model. See (Schütze & Walsh, 2008) for an extension of the model that takes second order effects into account.
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the exemplar model employs the half-word representations described above to make local gram-

maticality judgments.

Simulation 3 - modeled data

Stimuli. Using 10 different verbs, 10 different nouns and 10 words with a verb-noun ambiguity,

all grammatical sentence types of the form I verb noun (e.g, I love coffee) were generated. There

are a total of 400 types because there are 20 nouns (including the 10 ambiguous words) and 20

verbs (again, including the 10 ambiguous words).10 A random subset of 100 of these sentence

types was selected and assigned to the subclass unattested. The remaining 300 were assigned to

the subclass attested. In addition, 100 ungrammatical types of the form I coffee love were also

generated, but only using unambiguous words, i.e., the 10 unambiguous words were not used

for generating ungrammatical sentences. Finally a training set of 100,000 training sentences was

randomly generated from the attested subclass. The generation was biased towards unambiguous

sentences in a ratio of 3:1, that is there were 3 times as many sentences that did not contain an

ambiguous word than sentences that did.11

Procedure

The training set was stored as the exemplar database of the model. The left and right half-

word distributional vectors were calculated for all words in the training corpus. An instance of

each of the 100 unattested and of the 100 ungrammatical sentences was then presented to the

model as a probe and their activations were calculated using a similarity measure. For example, in

order to ascertain the activation of the probe sentence I love coffee, it is compared against all the

sentences stored in the model’s exemplar database. For a given exemplar sentence You like tea the

10The words are unanalyzed symbols for the model, any similar set will produce analogous results
11Since a random generator was used, the actual numbers deviate from a ratio of 3:1: 77,495 without an ambiguous

word, 22,505 sentences with an unambiguous word.
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comparison operates as follows:

1. The similarity of the I and You left half-words is calculated using the cosine.

2. In the same way the similarity of their right half-words is calculated.

3. These two results are summed to form a similarity value for these two constituents.

4. The same process is applied to the pairs love and like, and coffee and tea.

5. A boundary symbol (“ b ”) was introduced and represented as a word in order to provide

a representation for the beginning of a sentence and for the end of a sentence. In terms of the

representation of a sentence as a sequence of half-words, this means that each sentence begins with

the right half-word b r and ends with the left half-word b l. The boundary symbol captures the

intuition that knowledge about whether words can occur at the beginning or end of sentences is

also part of the learned representation of a word. For example, the cannot occur at the end of a

sentence.

6. The similarity scores for the three pairs and the two boundary half-words are then summed

to produce an overall similarity score for the probe sentence and the stored exemplar. If the

similarity is such that it can be classed as activated with respect to a radius threshold value then

it contributes to the level of activation associated with the probe.

How realistic is it to compare a stimulus to all exemplars in memory? This is a general problem

in exemplar theory. Clearly, going sequentially through all stored exemplars and comparing each

to the stimulus is not feasible if realistic processing times are to be achieved. The brain is a highly

parallelized processor, but even taking parallelism into account, it is unlikely that each stored

exemplar is reexamined every time a new stimulus is encountered. The general mechanisms by which

this computation could be made more efficient are not addressed here but clearly this is a problem

that exemplar theory will have to account for (Grossberg, 2003; Hintzman, 1986). The authors’ view

is that whatever general mechanism is capable of performing the required computations efficiently
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can also be employed for computing local syntactic coherence.

Fig. 7 shows a histogram of similarities for the 200 test sentences. For each of the 100 un-

grammatical and the 100 unattested sentences its similarity to the closest sentence in the training

corpus was computed. The histogram shows the distribution of these 200 similarities. Ungram-

matical sentences (similarities < 7.0) and unattested sentences (similarities ≥ 7.0) are perfectly

separated.12 The simulation successfully models the acquisition of local grammaticality because

ungrammatical sentences are dissimilar to grammatical sentences due to different left and right

contexts. An example for the latter is that when comparing I love coffee with I tea drink, the left

context of love (containing the subject I ) is very different from the left context of tea (consisting

of verbs like love, drink and make). Given that grammaticality judgments are based on at least

implicit knowledge of syntactic behavior it can be concluded that the model has to some extent,

in an emergent fashion, acquired local grammatical knowledge. Although the learning taking place

here is with respect to a small subset of English, generalizing to richer left and rights contexts is not

problematic as will be shown in the next section. In addition, it is important to note that, as with

the previous phonetics experiments, the same model of unit and constituent interaction is employed

here. That is, frequently co-occurring segments/words give rise to more autonomous higher level

units. Furthermore, as with the phonetics experiments, given the success of the simulation using

hand-crafted data the next step is to apply the model to data that are representative of the kind

of language input a child receives and, to place this model in the context of previous research, to

12The ambiguous words in the experiment were introduced to make the histogram in Fig. 7 non-trivial. If only

unambiguous verbs and nouns occur then all grammatical sentences receive a score of > 8.0−ε1 and all ungrammatical

sentences receive a score of < 4.0 + ε2, where ε1 and ε2 are small numbers. The score 8.0 is the sum of 8 half-word

cosine scores of close to 1.0, the six half-words of the sentence and the left and right boundary half-words. The

score 4.0 is the sum of 4 half-word scores close to 1.0 (the half-words of the left and right boundaries and the two

preposition half-words) and 4 half-word scores close to 0.0 (the two half-words of the verb and the two half-words of

the noun).
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compare it in the same task against a category-based approach. First, however, a more rigorous

description of local syntactic coherence is presented for the multi-level exemplar model, and for a

category-based model.

Local exemplar-theoretic coherence. A sequence of half-words h1, . . . , hn exhibits local

exemplar-theoretic coherence if, and only if, there exists a sequence of half-words g1, . . . , gn in

memory such that

n
∑

i=1

sim(hi, gi) > ρ

where ρ is a parameter acting as a radius.

sim(hi, gi) is the similarity between the relevant distributions of half-words hi and gi. For

example, given a stimulus sequence by the blue lake and an exemplar in memory beside a grey

mountain, one would expect that the overall similarity between the corresponding half-words, i.e.

sim(byl, besidel) + sim(byr, besider) + sim(thel, al) + sim(ther, ar) + ... + sim(laker,mountainr)

might well be higher than the similarity threshold ρ as each word (and half-word) would have

reasonably similar distributions. Hence the stimulus sequence by the blue lake could be described

as locally coherent. In order to determine the similarity between distributions in the simulations

below, the cosine was calculated. It is important to note that the radius parameter ρ gives rise

to a precision-recall trade-off. A large ρ will impose stringent requirements on which sequences

in memory match, resulting in false negative decisions for local grammaticality. A small ρ will

incorrectly judge many locally incoherent sequences to be grammatical.13

Note that coherence as defined here is discrete. A sentence is either coherent or incoherent.

13ρ is formally different from θ because it defines the radius of an exemplar cloud using a similarity value. In this

section, θ is always 1. If there is at least one exemplar in the exemplar cloud defined by ρ, that is, if α ≥ 1 in Fig. 1,

then α ≥ θ and there is sufficient activation for perception based on the unit pathway. λ is the counterpart to ρ for

the category-based model.
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It would be desirable to generalize this to a gradient notion of coherence to account for cases of

intermediate grammaticality. See Section 6 for discussion.

Category-based representations. Several previous papers have worked with variants of left and

right context vectors in a categorical framework. For example Mintz (2002), in an artificial language

learning study, provides psycholinguistic evidence that adults avail of a word’s immediately adjacent

neighbors to help categorize it. Subsequent work (Mintz, 2003), employing corpora of child-directed

speech, demonstrates that robust word categorization results can be achieved by grouping words

which lie within the same frequently occurring frame, where a frame is any two words that co-occur

in a corpus with a single word intervening between them. Monaghan et al. (2007) in a number

of experiments across English, Dutch, French and Japanese found that both the preceding and

succeeding words around a target word were strong indicators of the target word’s class, e.g., for

English, three preceding words, he, we and to, were better indicators of verbs than nouns.

The work by Redington et al. (1998) is perhaps the best known representative and the

experiments below are based on their method. It is important to note that although the use of

half-word distributional vectors of context-based information is reminiscent of Schütze (1995) and

Redington et al. (1998), the approach here differs from theirs (and others, e.g. Elman, 1990; Morris

et al., 2000) in that it is situated in an exemplar-theoretic framework where grammaticality in a

particular syntactic context is the object of interest rather than clustering of words within syntactic

category types. In addition, at the core of Exemplar Theory is the idea that linguistic generaliza-

tions are achieved on the basis of similarity between a novel stimulus and exemplars residing in

memory, where context is a crucial component. Redington and colleagues do not speculate as to

how the word clusters they induce could be used in syntactic processing and essentially view words

as abstract objects divorced from their contexts. The task they evaluate on is a clustering task:
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Words are clustered into groups based on left and right context vectors.14 The clustering method

is agglomerative hierarchical clustering, which generates a hierarchy of clusters with a large cluster

consisting of all words at the top and with leaves consisting of individual words at the bottom. This

hierarchy is then transformed into a set of disjoint clusters and compared with linguistic judgments.

For example, if the articles the and a are not put in the same category, then this is judged an error.

For judging local coherence in a categorical way, the following definition is adopted.

Local categorical coherence. A sequence of half-words h1, . . . , hn exhibits local categorical

coherence if, and only if, there exists a sequence of half-words g1, . . . , gn in memory such that

n
∑

i=1

common path(w(hi), w(gi)) > λ

where w(h) is the word that h is one half of and common path(w1, w2) is the length of the longest

common path that starts at the top of the hierarchy and ends at a node that is a parent of both

w1 and w2.

The greater the similarity between the distributions of two words, the later the words are

separated into two clusters, that is, when moving from the top of the hierarchy to the leaves, they

end up in different clusters towards the bottom of the hierarchy, corresponding to a long common

path.

For example, common path(w,w) = n− 1 (where n is the number of words) for all words w;

common path(w, v) = 18 if the lowest cluster c in the hierarchy that contains both w and v is at

level 18 of the tree, that is, of the two subclusters of c at level 19 of the tree one contains w and

the other v. To elucidate further, given the half-word stimulus sequence “byr, thel”, and an extant

14(Redington et al., 1998) also looked at a more complex representation than that employed here, one that is based

on words that are not directly adjacent to the target word. However, they did not find an appreciable difference in

categorization accuracy between the two variants.
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exemplar sequence “besider , al”, then

common path(byr, besider) + common path(thel, al)

will have a value of 26 = 12 + 14, if for example the words by and beside were separated when

moving from level 12 to level 13 of the tree and the and a were separated when moving from level

14 to level 15 of the tree. If the sum total is more than a threshold value λ then the stimulus

sequence “byr, thel” has local categorical coherence.

According to this categorical definition, a sequence is viewed as being locally grammatical

if for a particular clustering, a sequence with the same categories can be found in memory where

“same” is defined with respect to the agglomerative clustering hierarchy and the threshold λ. It

is obvious that with very few clusters, almost all sequences will be locally grammatical (including

sequences that are clearly not grammatically well-formed) while with a large number of clusters,

it becomes very hard to find identical sequences – even for a sequence that is perfectly well-

formed. In addition, it is particularly important to note that half-word representations are only

employed during the clustering process (essentially the training phase). In the simulation presented

below the comparison between a stimulus sequence and a previously stored sequence is carried out

using common path values. In other words, the key difference between local exemplar-theoretic

coherence and local category-based coherence is that the latter is determined using a more abstract

representation, the membership of words in clusters as defined by an agglomerative hierarchy.

Given the definitions for both local exemplar-theoretic and local category-based syntactic

coherence for sequences, the following definition at the level of the sentence is required.

Local syntactic coherence of a sentence. A sentence can be said to possess local syntactic

coherence if all of its subsequences are locally coherent. Local syntactic coherence is a function of the

definition of sequence coherence used (exemplar-theoretic or category-based) and parameters n (the

subsequence length) and ρ (exemplar-based similarity threshold) or λ (category-based similarity
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threshold).

The distinction between sequences and sentences is important. In the experiment below,

each time a stimulus sentence is tested against a model’s memory (exemplar-theoretic or category-

based) it is split into sequences of length n (a variety of lengths are investigated) and each sequence

is compared to all sequences of the same length in memory. For each sequence, the model then

identifies the sequence in memory with the largest similarity. To be conservative, the smallest

of these largest similarities (i.e. the most ungrammatical) is treated as the result. For example,

(assuming direct word comparison rather than half-word representations, purely for the purposes

of illustration), given the phrase I love coffee and the stored memory You like the big tree, and

sequence length of n = 2, then the stimulus subsequence I love will be compared against You like,

like the, the big, and big tree and the largest similarity will be retained. The stimulus subsequence

love coffee is then compared against You like, like the, the big, and big tree and the largest similarity

is retained here too. If the smallest of these two retained similarities is larger than the similarity

threshold (ρ for the exemplar-based model or λ for the category-based model), then the phrase I

love coffee has sentence level local syntactic coherence as all of its subsequences are locally coherent.

Defining the local grammaticality of a sentence as the grammaticality of its least well-formed

subsequence puts long and complex sentences at a potential disadvantage since they contain more

subsequences of a given length that can be locally incoherent. However, the notion of local gram-

maticality is intended to capture the fact that neighboring words are syntactically compatible and

that no rare or unusual combinations like Peter bring (singular noun + plural verb) occur. Of

course, such combinations do occur in language due to long-distance dependencies, e.g., when a

subject relative clause is followed by the main verb. The present model is limited to local gram-

maticality and can therefore not account for this type of long-distance effect. It is plausible that

the ability to judge local grammaticality is acquired first and that the acquisition of more complex
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syntax then builds on this capability. When only considering local grammaticality it is appropri-

ate to insist that all subsequences be locally coherent – which justifies taking the smallest (least

grammatical) value in the definition of local coherence.

Armed with definitions for both models and a formal definition for grammatical coherence

at the sentence level the following comparative experiment was performed.

Simulation 4 - corpus data

The goal of this experiment is to establish the extent to which the multi-level exemplar

model is capable of distinguishing between ungrammatical and real-world grammatical sentences

and, motivated by the exemplar-theoretic idea that detailed context information should facilitate

linguistic inference, to ascertain whether the exemplar-based model offers benefits which enable it

to outperform a category-based model.

To test these hypotheses, the well-known CHILDES database (MacWhinney, 2000), a repos-

itory of transcripts and media documenting conversations between young children and their play-

mates, siblings, and caretakers, was employed. In order to avoid mixing varieties of English (e.g.,

British English vs. American English), the largest homogeneous subcorpus of CHILDES, the Manch-

ester corpus, was selected. It contains almost 350,000 sentences consisting of more than 1.5 million

words. This is a conservative estimate of the amount of child-directed speech a child would re-

ceive annually (Redington et al., 1998). All names in the corpus (i.e., all capitalized words) were

replaced with a special word “ n ”. Again, a boundary symbol “ b ” was introduced to begin and

end sentences. The representation of the corpus is then a concatenation of all its sentences. The

vocabulary consists of 8601 words.

Stimuli - Construction of the evaluation set. In order to test the ability of the two models

to distinguish locally coherent vs. incoherent sentences, a total of 100 “unattested” sentences were
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selected from the corpus and were not used to train the model. Only unattested sentences that

were not a substring of a sentence in the training corpus were selected, since, presumably, any

substring of a sentence in the training corpus is locally coherent. A further constraint was that the

unattested sentence was not allowed to contain a word that did not occur in the training corpus.

This constraint is motivated by the desire to address the problem of local syntactic coherence for

known words only, since unknown words present special challenges.15 Finally, each unattested

sentence contained a word that occurred in only one sentence type in the training corpus. Early

experiments indicated that local grammatical inference for frequent words is easy to determine as

there is redundant evidence available that characterizes legal syntactic environments for frequent

words – a frequent word’s local syntactic context in the test set often occurs verbatim in the training

set, so that an evaluation of local syntactic judgments for frequent words is mostly an evaluation

of memorization (as opposed to true productivity). In contrast, rare words are a real challenge in

language acquisition. For this reason, only those sentences that contained at least one rare word

were selected as possible unattested sentences.

A set of 100 ungrammatical sentences was then generated by randomly selecting words from

15While the authors think that the acquisition of local syntactic coherence for known words should be addressed

before turning to unknown words, they nevertheless wanted to verify that the model can handle unknown words in

principle. To ascertain this, the words the, in and bag were represented in the probe sentence “the unknown word

in the bag” using half-words. This probe sentence was then compared with all 5-word sequences in the corpus,

represented as w1lw1rw2lw2rw3lw3rw4lw4rw5lw5r, but, in contrast to the work presented in the main body of this

article, w2l and w2r were not used to compute the similarity. The n-word sequences (n=5) that were most similar to

the probe sentence were then determined. The words w2 in these n sequences were: baby, bag, bricks, camera, cards,

food, lady, ones, orange, pieces, shopping, things, and top. These are all words that could plausibly have the same

part of speech as the unknown word appearing in the context “the unknown word in the bag”. This suggests that the

model can infer the syntactic properties for unknown words based on sequences in memory, although working out a

complete computational model of this process is nontrivial.
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the vocabulary and concatenating them. This was accomplished as follows. For each unattested

sentence, its length l was determined. Random sentences of the same length were then repeatedly

generated until one was produced that met the conditions of (i) not being a substring of a sentence

in the training corpus (and, in particular, not being identical to a sentence in the training corpus);

and (ii) containing at least one rare word.

The experiment just described was repeated 20 times. Each run generated a training set of

about 350,000 training sentences, a disjoint set of 100 unattested grammatical sentences and a set

of 100 ungrammatical sentences.16

Unlike the proof-of-concept simulation (Simulation 3), the task of discriminating the 100

unattested from the 100 ungrammatical sentences cannot be solved perfectly as CHILDES con-

tains ungrammatical, incomplete and misspelled sentences, a few of which were randomly selected

as unattested sentences (e.g., higgledy piggledy my). Similarly, a number of the automatically

generated ungrammatical sentences were actually grammatical (see example given in Table 4).17

However, the evaluation set is appropriate for a comparative evaluation.

Procedure. In order to train the model, left and right half-word representations were com-

puted on the corpus as described in Table 2, i.e., using relative frequencies that correspond to the

maximum likelihood estimate for each probability. The left half-word and right half-word distribu-

tions were then available for all 8601 words. For the category-based approach, following Redington

16The number of training sentences varies slightly from trial to trial. This is because an unattested sentence that

occurs 20 times in the Manchester corpus will “remove” more instances from the training set than an unattested

sentence that occurs only once.
17In order to make the experiment replicable, manual intervention in the production of the test set was avoided.

Grammaticality is a gradient notion and different experimenters would create qualitatively different test sets based on

the notion of grammaticality they apply. The manual correction of all of CHILDES is a significant effort that would

be beyond the scope of this project. Hence, the ungrammatical sentences (automatically generated or CHILDES),

and the misspellings were not corrected.
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et al. (1998), the most frequent 1000 words were clustered (using single-link clustering, Manning &

Schütze, 1999) by combining items which are closest together with respect to the similarity measure.

Combined items, or “clusters”, can then be further combined with nearby items or clusters. For

each remaining word w, the closest neighbor w′ in the 1000 most frequent words was determined

and w was then assigned to the cluster of w′. Once trained, each model was then presented with the

unattested and ungrammatical test sentences. As described above, the local syntactic coherence

score of each test sentence was computed as the largest similarity between the test sentence and

any training set sentence. Based on this largest similarity, a grammaticality judgment was made

as detailed below.

Analysis of accuracy and window length. Fig. 8 shows the performance of category-based and

exemplar-based discrimination for different subsequence sizes n. To compute the accuracy for each

n, the ρ or λ with optimal discrimination performance was chosen. Results shown are aggregated

for all 20 runs because all runs were consistent with the main results of the paper. For example,

for n = 4, the smallest accuracy of the exemplar-theoretic model was 98% and the largest 100%;

the smallest accuracy of the category-based model was 86.5% and the largest accuracy was 94%;

the smallest difference in accuracy between the two models was 5% and the largest difference was

12.5%.

For a subsequence of size n = 1, the performance is 0.5 in both cases since the 200-sentence

test set does not contain unknown words. So for every half-word, there is a sequence of one half-

word in the training corpus with maximum similarity (which is 1.0 in the exemplar-theoretic model

and n− 1 in the category-based model). Thus, all sentences get the same local syntactic coherence

scores, both in exemplar-based and in category-based discrimination.

This is not the case for n = 2 since a sentence, as defined above, is considered to be locally

coherent if all of its subsequences are coherent. While subsequences of 2 half-words that are part
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of the same word have local syntactic coherence score 2.0 (= 1.0 + 1.0) in the exemplar-theoretic

model, this is not true of subsequences of 2 half-words that are part of different words, e.g., the

subsequence <black r,dog l > in black dog. If black dog does not occur in the training set, then its

local syntactic coherence score will in general be smaller than 2.0.

The experimental results demonstrate that, though imperfect for the reasons outlined above,

exemplar-based discrimination of locally coherent vs. incoherent sentences is largely accurate for

n > 1 and superior to the category-based discrimination investigated. Indeed, except for n =

1 the differences between category-based discrimination and exemplar-based discrimination were

significant (Pearson’s χ2 test applying Yates’ continuity correction, p < 0.1 for 2 ≤ n ≤ 10 and

p < 0.05 for 2 ≤ n ≤ 10, n %= 9).

Analysis of errors made by the models. In order to perform a qualitative analysis, the data

corresponding to one of the window sizes (n = 4) was selected. This data set consists of 2000

ungrammatical and 2000 unattested sentences as summarized in Table 3. Table 3 shows the number

of errors (both false positives and false negatives) and correct decisions (both true positives and

true negatives) of the two models for the 4000 sentences. The category-based model makes about

10 times as many errors as the exemplar-based model, in keeping with the foregoing quantitative

analysis.

A sentence-by-sentence analysis of the errors of the exemplar theoretic model was then per-

formed. Table 4 gives examples of the types of errors found when analyzing the 37 (27 + 10) errors

made by the model. Each line of the table gives a test sentence, which type of error was made,

a false positive (FP) or a false negative (FN), the subsequence stest of the test sentence whose

greatest similarity to any subsequence in the training set was smallest, the training sentence sub-

sequence strain that stest was most similar to, and a short description of the reason the error was

made.
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Sentence 1 (higgledy piggledy my) is an example of a sentence in CHILDES that is not

grammatical in the ordinary sense of “grammatical sentence”. It is the truncated title of a nursery

rhyme. It is not surprising that this sentence is categorized as ungrammatical.

Sentence 2 (little bird cannot speak she’s got a worm in her beak) exemplifies a problem that

could also be alleviated by a better annotation of the CHILDES corpus. In this case, the sentence

boundary (or, at a minimum, the intonational break) between speak and she is not annotated. This

confuses the model and causes the incorrect false negative judgment.

Sentence 3 (you’ve got a stuffed nose haven’t you) is an example of the difficulties that rare

words pose. The word stuffed only occurred once in the training set of the relevant run (run 9 of

the 20 runs) and its left and right half-word distributions were so dissimilar from the distributions

of all other half-words that the most similar sequence of half-words in the training set was the

only occurrence of stuffed in the training corpus. Due to the ubiquity of rare events in linguistic

statistics, it is unavoidable that some errors due to unreliable rare event statistics are made.

Sentence 4 (chocolate tummy broke) is an example of a false positive that is caused by a

violation of the assumption that the randomly generated sentences are all ungrammatical. While

the sentence may be anomalous semantically, the three word sentence structure (consisting of a

two-noun compound and an inflected verb) is perfectly grammatical.

The reason that sentence 5 was incorrectly judged to be similar to the sequence one bottle

there is probably that more complex long-distance relationships are not modeled in the model.

The hallmark of locally coherent strings is that they are perceived as well-formed independent of

context. This is not true for noun+adverb combinations. Bigrams like (noun) there or (noun)

yesterday require particular contexts to be well-formed. E.g., this type of bigram is grammatical

in contexts like I’m not in the kitchen right now, so the bottle there is not visible to me and

Gonzales’ performance yesterday will be remembered for many years to come, but are of questionable
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grammaticality in contexts like the tv yesterday was green or his mother there is sick. Since the

model is a model of local coherence only, it does not represent sequences correctly that depend on

a larger context. The premise is that more complex syntactic structures are learned later and the

current goal is to model the acquisition of local syntactic coherence only.

Table 5 shows the number of decisions that the two models agree and disagree on as well

as the type of agreement or disagreement, broken down according to which model was correct

and which was wrong and according to type of sentence affected (grammatical or ungrammatical).

It is apparent from the table that most errors committed by the exemplar-theoretic model are

also committed by the category-based model: the two models share 19 false negative errors and

4 false positive errors. The exemplar-theoretic model committed only 8 false negative errors and

6 false positive errors that were not also committed by the category-based model. Several of the

errors were the types of spurious errors in Table 4 that were discussed earlier. In particular, both

sentences 1 and 4 were among those that in this evaluation were misclassified by the exemplar-

based model, but “correctly” classified by the category-based model. In a few of the remaining

cases, the category-based model categorized words into related classes whereas the exemplar-based

model did not recognize their similarity. For example, the category-based model recognized that

diving can be used prenominally and was therefore able to correctly classify is that his diving

board as grammatical. In contrast, the exemplar-theoretic model analogized the word diving to the

interjection um due to sparse data problems – diving occurred only once in a prenominal position in

the relevant training set (run 6 of the 20 runs). Thus, there were a few cases where category-based

inference was more robust. However, the experiment clearly shows that inference based on rich

context, as available in the exemplar-theoretic model, is more successful overall.

This conclusion was confirmed by an analysis of a sample of the 384 sentences that the

exemplar-theoretic model handled better than the category-based model (284 grammatical sen-
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tences and 100 ungrammatical sentences). Note that the number of false positives in this set is

much larger than the set of false negatives because the category-based model has a tendency of

putting words in the same class even if they have different grammatical behavior. Examples of pairs

of words that were analogized by the category-based model even though they are syntactically dif-

ferent are museum/along, soapy/horse and ton/no. Recall that the optimal number of clusters is

chosen for the category-based model in each run – if such bad decisions of putting words in the

same cluster are undone, then the model also separates words that should be in the same cluster

and overall performance decreases. Apparently, it is difficult to represent all required syntactic

context information with a fixed number of classes.

Summary. In the authors’ view, the experiment demonstrates that the ability of exemplar

theory to incorporate rich context information into discrimination decisions results in a more com-

plete acquisition of local syntactic knowledge than a categorical model that has to operate on a

representation from which most fine contextual detail has been removed.

The challenge for a categorical model is that it must provide an initial underspecificied

representation that has not been modified by context yet – or one would assume the result of the

successful disambiguation process that is the subject of investigation. The exemplar model, due to

its ability to capture rich context in the representation of an individual word, does not have this

problem.

This argument is of particular importance for ambiguous words. Underspecified representa-

tions for ambiguous words do not reflect intuitive syntactic categories like verb and noun. More

importantly, they obfuscate the similarity of, for example, increase (which has a verb / noun ambi-

guity) to bring on the one hand (an unambiguous verb) and to tree (an unambiguous noun) on the

other. In other words, category-based representations of ambiguous words are problematic because

they are either too similar or not similar enough to the two alternatives. As a result, if a word with
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a verb/noun ambiguity is represented as one of the alternatives, e.g. as a verb, then subsequences

containing its noun use will no longer be similar to other subsequences with nouns. If a special

conflation category noun/verb is introduced, then the same problem is encountered: subsequences

containing the noun/verb category are not similar to subsequences containing either unambiguous

verbs or unambiguous nouns.

Hence it seems hard to conceive of a categorical model that can reconcile the competing de-

mands of (i) initial context-independent representation and (ii) final disambiguated representation.

Of course, only one particular categorical model has been investigated here, and found lacking.

However, Redington et al.’s (1998) model is the best known and respected computational model of

the acquisition of syntactic categories. Consequently, the authors view the experiments reported

here as potential evidence that the limitations of category-based models discovered here might in

fact be general limitations of all category-based models, but this requires further investigation.

6. General Discussion

This article has presented an exemplar-theoretic model that makes correct predictions using

both hand-crafted and real corpus data for two specific linguistic phenomena, and, in the case of

local syntactic coherence judgments, illustrates the benefits of rich exemplar representations over

their categorical counterparts. Interestingly, the phenomena examined hail from different linguistic

domains, yet the same model is capable of accounting for their behavior. It is also noteworthy

that the model achieves this without prototypes or any explicit abstraction mechanism. At least

for the phenomena investigated here, a simple exemplar model without prototypes seems to be

sufficient. Note, in particular, that Abbot-Smith and Tomasello (2006) express doubts that a pure

exemplar-theoretic model can account for grammaticality judgments. Their hybrid categorization

model, outlined in section 1, allows for exemplar learning and retention but also offers an abstrac-

tion mechanism where a more abstract schema is somehow encoded in the summed similarities.
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However, while the comprehension of an exemplar might strengthen the activation of an exemplar

cloud as a whole, this does not necessarily entail that the exemplar representations themselves have

to change. Indeed, the model presented here illustrates accurate local grammaticality acquisition

without the need for any modification of stored exemplars nor any form of more abstract represen-

tation.18 Similarly, the syllable and segment exemplar representations in section 3 are not modified;

their clouds, in the frequent cases, simply become more dense over time and hence produce greater

activation. From the viewpoint of categorization, in both fields, novel stimuli are correctly cate-

gorized through direct comparison with exemplars in memory. Thus, for the disparate phenomena

examined above, exemplar theory appears to provide an adequate account. It is important to note

that this is not necessarily a rejection of the development of abstract structures overall but, with

respect to local grammaticality judgments, an indication that at this phase of language acquisition

the largely accurate grammaticality judgments, which are a function of the emergence of syntactic

awareness, can be accounted for in a purely exemplar-theoretic account such as described above.

While it could perhaps be argued that some form of abstraction is implicitly encoded in the summed

similarities in this model, there is certainly no explicit abstraction component.

In fact, the syntactic representations in the multi-level model could be the basis for a more

explicit abstraction component in further language development. There is a lack of explicit com-

putational models that show how the transition is made from an initial state in which syntactic

categories are not recognized to a state where they are used in comprehension. In later stages of

development, the exemplar clouds formed in the multi-level model could be linked either to innate

syntactic categories or to a more abstract non-innate layer of representation. This interpretation

of the multi-level model is not incompatible with a hybrid model like the one presented by Abbot-

18One can view half-words as representations that change over time. For example, each time a left neighbor wl is

observed for word w, the activation of wl in the left half word representation of w is strengthened. While activations

in the model presented here change, there is no more fundamental change to the representations.
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Smith and Tomasello (2006). The difference is that an explicit mathematical and computational

formalization was provided here.

From the phonetics perspective the model’s ability to model the syllable duration variability

observed by Schweitzer and Möbius (2004) in high frequency syllables (albeit with some underlying

assumptions) is not dissimilar to the Reducing Effect discussed by Bybee. Similarly, her Conserving

Effect is essentially captured by the multi-level model’s competition between units and constituents

in that greater frequency strengthens the memory representations of sequences enabling their access

as whole units. Bybee’s third effect concerns autonomy and she offers the example of the grammat-

icalization of be going to, i.e. its diachronic evolution into an intentional phrase. The multi-level

model offered here is also capable of modeling this language evolution phenomenon (see Schütze et

al., 2007).

A further important aspect of the research presented in this article concerns the use of radius-

based and nearest-neighbor approaches to exemplar cloud formation. The experiments presented

above offer compelling evidence that neighborhoods in exemplar theory must be radius-based as

opposed to relying on a nearest-neighbor formation method. θ, ρ and λ are all radius parameters.

While other researchers have used nearest neighbor approaches in their exemplar-theoretic research,

in the case of grammaticality, even ungrammatical sentences have nearest neighbors (albeit neigh-

bors that are far away). It is therefore not clear how grammaticality judgments could be modeled

with nearest-neighbor clouds. Previous arguments in favor of nearest-neighbor clouds were based

on difficulties found in implementing fixed-radius models (Pierrehumbert, 2001) and not on any

fundamental reasons.

One challenge for exemplar theory is to explain how exemplars of constituents interact with

exemplars of compositions of constituents into larger units. Segments and words on the one hand,

and syllables and phrases on the other hand, each give rise to exemplar clouds at different levels.
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One of the key properties of language is the interaction of such units at different levels. This

multi-level approach provides the first exemplar-theoretic model that explicitly incorporates con-

stituency, both at the level of phonetics and syntax. Furthermore, this research represents a first

step towards placing syntactic exemplar theory on a more formal footing with explicit statements

of the assumptions of the model and the ability to test them against data. Up to now, some of the

more noteworthy examples of exemplar-theoretic work on syntax have lacked a significant formal

component (e.g., Abbot-Smith & Tomasello, 2006; Bybee, 2006). However, Bod (2006) has recently

argued that data-oriented parsing (DOP) is an exemplar model. While no formal exemplar model

can provide such a full exemplar-based account of grammatical productivity as DOP provides, it is

perhaps noteworthy that DOP offers no notion of similarity between a stimulus and an exemplar

cloud member. This notion of similarity tends to be a critical factor in most “traditional” (and

perhaps therefore non-syntax oriented) exemplar models. Moreover, it is unclear to what extent

DOP might be successfully applied to account for linguistic phenomena other than grammatical

productivity, e.g. the syllable duration variability discussed above.

Challenges for the model

Before concluding it is important to note that although the model presented above has not

yet been applied to phrase or sentence production, research currently underway is investigating

how this can be best achieved. In addition, although the model implicitly acquires local gram-

matical knowledge it is important to note that it does not model the developmental timecourse

of acquisition. It simply demonstrates the learnability of local syntax using representations rich

in distributional information. One possible way to address this would be to provide the model,

in increments, with data representative in quality and quantity to data received by children by

particular developmental milestones, and to then test the model to see if the corresponding de-

velopmental targets have been acquired. This is clearly non-trivial and beyond the scope of this
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article. A further area of future work to be considered concerns the fact that the radius parameters

of the exemplar neighborhoods, and the activation thresholds below which the constituent level is

chosen, were manually selected. Obviously, the performance of the model depends on the values of

these parameters. If the radius in the grammaticality model is too large, then even ungrammatical

sentences will be judged grammatical. However, it was not the goal of these experiments to auto-

maticlly find θ or ρ, rather the aim was to determine if thresholding and a radius-based approach

would work at all, and a variety of empirically selected values model the data well. However, the

authors believe that these parameters can be estimated from the distribution of exemplars. For

example, the similarities of ungrammatical sentences to the nearest neighbor are much smaller than

those of grammatical sentences. One possibility for selecting θ is to divide the input in two, for

training and testing, compute the distribution of distance values obtained when finding the nearest

neighbor for each test sequence among the training sequences, and then select a value close to

the maximum (e.g. the first percentile). The assumption would be that almost all of the input

sequences are grammatical and that for a large enough test set, the range of distance values would

be represented well by this sample. Taking a value close to the maximum will then ensure that all

grammatical test sequences will have a training sequence with distance below θ. Density estimation

is another possible solution to this problem. It might also be worth generalizing the multi-level

model to account for gradience. For example, instead of making a discrete grammaticality decision

based on the radius ρ, the degree of grammaticality could be computed by a function like the

sigmoid that assigns discrete values approximating 1 or 0, for sentences that are a considerable dis-

tance above or below the threshold respectively, but intermediate values to sentences that are close

to the threshold. This would approximate thresholding behavior while also providing continuous

gradient grammaticality judgments in keeping with those found in the literature (see Theakston,

2004; Ambridge, Pine, Rowland, & Young, 2008).
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To conclude, the exemplar model presented above is successful in accounting for phenomena

from both phonetics and syntax. It does so by employing a novel architecture which facilitates the

explicit modeling and invocation of constituency interaction. The model offers insights into the

nature of exemplar cloud formation and illustrates the benefits of rich exemplar representations

when compared with abstract category-based representations. These results are in keeping with

Hay and Bresnan’s (2006) prediction that combining insights from across a variety of linguistic

domains might yield more universal and cognitively plausible models of language acquisition and

use.
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List of Figures

1 Architecture of the unified model. If the unit xyz receives enough activation,
then its exemplar cloud (shown to contain x1y1z1 and x2y2z2) is the basis
for production or perception. Otherwise the alternative path is taken where
exemplars similar to the individual constituents x, y, and z are used as the
basis for the input to the composition function. The figure depicts the case
where there are at least two unit exemplars (shown as x1y1z1 and x2y2z2)
that are similar to the input stimulus xyz; in some cases there will be no
similar units in the unit exemplar database, resulting in an empty exemplar
cloud.

2 Experimental results for variation of syllable duration. Infrequent syllables
(dashed line) have lower variability in duration than frequent syllables (solid
line).

3 Initialisation to first production in the syllable exemplar model. Low unit
activation (α < θ) results in constituent level production, i.e. composition of
segments.

4 In the syllable exemplar model, growth in frequency ultimately yields high
activation (α > θ) and unit level production

5 Linear regression models: mean z-scores of segments within a composite syl-
lable plotted against z-score of the unit syllable (dependant variable) for
frequent (left panel) and infrequent (right panel) syllables.

6 Results from Schweitzer and Möbius (2004). Linear regression models: mean
z-scores of segments within a syllable plotted against z-score of the syllable
(dependent variable) for frequent (left panel) and infrequent (right panel)
syllables.

7 Histogram of sentence similarities. For each of the 100 ungrammatical and
the 100 unattested sentences its similarity to the closest sentence in the train-
ing corpus was computed. The histogram shows the distribution of these 200
similarities. Ungrammatical sentences (similarities < 7.0) and unattested
sentences (similarities ≥ 7.0) are perfectly separated.

8 Accuracy of discrimination between grammatical and ungrammatical sen-
tences of the exemplar-based and category-based methods.
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syllable duration grammaticality
stimuli syllable to be produced phrase (in perception)
constituents segments words
constituent representation acoustics, duration word’s left / right context
similarity of constituents sum of similarities of the components of the representation
units syllables phrases
unit representation sequence of constituents
similarity of units sum of similarities of the constituents of the units
property inferred duration of syllable grammaticality of novel phrase

Table 1: Components of the unified exemplar-theoretic model.
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people chocolate beside
liker 0.0054 0.0004 0.0000006
lover 0.000098 0.0072 0.000007
sitr 0.0000001 0.0000001 0.0045

Table 2: Subsection of a bigram statistics matrix. Each row represents part of the probability
distribution for the corresponding right half-word given in column 1.
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exemplar-theoretic model
grammatical ungrammatical

accepted 1973 (TP) 10 (FP)
rejected 27 (FN) 1990 (TN)

category-based model
grammatical ungrammatical

accepted 1697 (TP) 104 (FP)
rejected 303 (FN) 1896 (TN)

Table 3: Number of errors (false positives (FP) and negatives (FN)) and correct decisions (true
positives (TP) and negatives (TN)) of the two models for the sentences used in the qualitative
analysis.

Table



test sentence type closest subsequences type of problem
test train

1 higgledy piggledy
my

FN piggledy (l/r) my
(l/r)

beep (l/r) my (l/r) unattested sentence
ungrammatical

2 little bird cannot
speak she’s got a
worm in her beak

FN cannot (r) speak
(l/r) she (l)

you (r) speak (l/r)
NAME (l)

missing sentence
boundary

3 you’ve got a stuffed
nose haven’t you

FN a (r) stuffed (l/r)
nose (l)

probably (r) stuffed
(l/r) in (l)

rare word stats un-
reliable

4 chocolate tummy
broke

FP chocolate (l/r)
tummy (l/r)

chocolate (l/r) pud-
ding (l/r)

random sentence
grammatical

5 somewhere bottle
rubble

FP somewhere (r) bot-
tle (l/r) rubble (l)

one (r) bottle (l/r)
there (l)

long-distance de-
pendency

Table 4: Qualitative analysis of false positive and false negative errors of the exemplar-theoretic
model. Each line gives a test sentence, whether it was a false positive (FP) or a false negative
(FN), the subsequence stest of the test sentence whose greatest similarity to any subsequence in the
training set was smallest, the training sentence subsequence strain that stest was most similar to,
and a short description of the reason the error was made. Words in subsequences are marked with
l (left half-word), r (right half-word) or l/r (both left and right half-words), depending on which of
the word’s half-words were part of the subsequence.

Table



category-based
correct incorrect

GR UN GR UN
exemplar-theoretic correct 1689 1890 284 100
exemplar-theoretic incorrect 8 6 19 4

Table 5: Number and type of decisions that the two models agree and disagree on. GR = gram-
matical, UN = ungrammatical. For example, there were 6 ungrammatical sentences for which the
category-based model made a correct decision (TN) and the exemplar-theoretic model made an
incorrect decision (FP).
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