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Abstract

We compare two segmentation approaches to plosive dated@ine aproach is using a uniform
segmentation of the speech signal1t® ms slices whereas the other assumes additional information
about the start and end of each phone and uses these valuegnasngation boundaries. We show
that including this information yields significantly batteesults than using a uniform segmentation. We
test both approaches in three different experiments usiegTiMIT corpus: plosive vs. non-plosive

recognition, voiced vs. unvoiced plosive detection andviddal plosive classification.

Index Terms

Plosive detection, Segmentation, Pattern recognition

. INTRODUCTION

The purpose of this technical report is to present a staistlassification framework for plosive
detection. In contrast to the traditionally applied methadhich use information of the signal before
and after the relevant time frame [1] we perform a decisianefach individual speech segment. Our
approach can be summarized as follows: First, segment thechpsignal into blocks of either a fixed
size of 10 ms or a variable size that exploits additional informationtbe start and end of each phone,
second perform a decision for each segment to which classanps.

A segmentwise approach does not require training a HMM, ivlicomputational demanding. We can
use simple classification schemes such as the Bayes clesidfievhich are more efficient. However, there

is a clear disadvantage to our phone-driven approach.vemsire phonetically not uniform segments.
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To the contrary, they consist of two seperate temporal ghassilence phase at the beginning (e.g. the
average length in TIMIT is57.1 ms) which is followed by the burst and the release phase {ergy.
average length in TIMIT is38.5 ms). HMM-based approaches are by nature more suited to cdpe w
this temporal characteristic. Our goal is therefore to findiraple but effective classification method
which works on a phonetic basis and yields at least the samnfierpance as a HMM-based system. The
closure—burst phonetic structure of each plosive is weserved in the speech signal and the boundaries
of this unique phonetic structure are very clearly matchedur experiments we use this natural phonetic
segmentation of a plosive and assume that its boundarieknaren. We will investigate the possible
performance improvement by such an adaptive segmentatic@omparison to a fixed segmentation.
This is a first step into developing a phonetic knowledgestladetection system which, together with
supra-segmental features [3], will enhance the detectsalts.

The detection of plosives from speech signals is a “toughbfam in phonetics and speech recognition
but it is also an important step in many speech applicatigng. for the coding of speech it might be
advantageous to know the position of the plosive sounds @amdodel them independently as this helps
to improve the reconstructed speech quality, see [4]. Soor& Was been done in designing classifiers
that avoid an HMM-based approach. In [5], a detector is amred that marks the time between a
closure—burst transition. Another approach is the knogdeblased landmark detector from [6] which is
used to distinguish plosive from non-plosive segmentss Thirresponds to our first experiment.

This report is organized as follows: In Sec. Il, we summatimethree experiments which we conduct.
Starting from the easiest task, which is to decide whetheloaiye is present or not, we differentiate
in the second task between voiced plosives and unvoicedvpid-inally, the last task is the detection
of each plosive individually. Sec. Ill gives a detailed dgstton of the used features which yield the
simulation results in Sec. IV. We show that using the addéldiming information of the start and end

of each phone improves the simulation results significantly

Il. EXPERIMENTS AND SETUP

We use the TIMIT corpus [7] for our three experiments becadfists meticulous phonetic transcription
for each speech file. We use TIMIT as ground truth for each segito determine the class it belongs
to. The three experiments that we conduct are

Exp. 1:Plosive vs. non-plosive classification where clesuhat belong to the plosive are treated as

part of the plosive. Using the TIMIT notation, we try to detad segments that belong {9'v/,
/v/, /d/, Jt/, /k/, /g/, /q/} and the corresponding closure labels as well.



Exp. 2: A three-way classification: voiced plosives, unediplosives and non-plosives, i.e. we have
now three classed:/v/, /d/, /g/ + closure$, {/p/, /t/, /k/ + closures,/q/} and the class
of all non-plosives.

Exp. 3:Detection of individual plosives, i.e. we have iralateven classes, i.e. six plosive clasggs '},
{/p/}, {/d/}, {/t/}, {/k/}, {/g/} and one non-plosive class. This is the most challenging
task of all three experiments.

Each experiment is performed twice: In the first run, we sagime the speech signal in blocks ti

ms length. For each block, we do a separate classificatiom.s€hond run uses also a segmentation but
the segments are chosen to be identical with the positioracti @hone as it is annotated in the TIMIT
corpus. We compare both runs to evaluate the performanseiflo® timing information is used as in
the first run. The complete training and test parts of the TMMbrpus are used for the training and

evaluation, respectively.

As classifiers, we use the well-known Bayes and decisiondiessifiers [2]. For the Bayes classifier,
we assume the feature distribution for each class to bevatiite Gaussian. This classifier is especially
suited for our experiments as we have a large number of migiand classification patterns, and the
Bayes classifier with a multivariate Gaussian distributiorknown to be very efficient with respect to
its computational complexity. As feature selection algon, we use the well-known Sequential Floating
Forward Selection (SFFS) algorithm from [8]. However, wedified the SFFS to take the classification
rate for each class into account instead of only consideniagverall classification rate. This is important
as the relative occurrence frequency of the classes diffiestantially, e.g. for the detection of plosives
vs. non-plosives where the percentage of plosives is velgtsmall. Without a modification of the SFFS,
the classifier would label plosives as non-plosives and by $imple scheme it would achieve a high
overall detection rate which is undesirable. Especially Bayes classifier is prone to that error. Note,
that another possibility to deal with the small number ofsples would be a training set regularization

where we e.g. randomly choose only as many non-plosives dsawe plosives.

[1l. FEATURES

In this section, we introduce the features that we used ferditection of plosives. All features are
based on a0 ms segmentation. For the case that we use the start and enghufn@ to segment the
speech signal,we calculate the feature values fot(aths segments that fall into the phone interval and

then use the average operator to obtain the features.



A. Energy Bands [6]

The first group of features that we use are energy bands [6]cAMeilate one energy value for each
10 ms time segment in our experiment. The bands are defined detheency interval® Hz — 400 Hz,

800 Hz—1500 Hz, 1200 Hz—2000 Hz, 2000 Hz—3500 Hz, 3500 Hz—5000 Hz, and5000 Hz—8000 Hz.

B. Energy Envelopes [9]

The next group of features are energy envelopes. Energyogr@sedynamically split the frequency
spectrum into bands, depending on the number of bands tbatdsbe used. For our experiments, we
used four bands which results in the following frequencegnvals:1Hz—8Hz, 8Hz—70Hz, T0Hz—594Hz
and594Hz — 5000Hz. This division corresponds to the results given by [9]réH®o, one energy value is
calculated for each time segment. Furthermore, we used paksyfiltered version of these as additional

features.

C. Formant Frequencies and Bandwidths [10]

Another set of features are the formant frequencies and blagidwidth. They are calculated using the
LPC approach to obtain an all-pole vocal tract model. Eactjugmte complex zero pair corresponds to

one formant frequency and its distance to the unit circlegithe bandwith. We use the formulas
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to map a polep, of the all-pole model to its frequencly’ and bandwidthB. The first four formant

frequencies and the first four formant bandwidths are usddaiares for detection of classifiers.

IV. SIMULATION RESULTS

Exp. 1: The first experiment is plosive vs. non-plosive classif@mativhere closures that belong to
the plosive are treated as part of the plosive. The resudtstamwn in Table | and Il for the case of a fixed
and phone-based segmentation. Comparing both tables,enmbatethe overall classification rate is in the
same range for both runs. For the second run, however, tHegion matrix is better balanced between
the two classes. The good classification rate for the firstisutue to the misclassification of plosives
as non-plosives. The reason for this is that we have 236 568ivel segments opposed to 1184951

non-plosive segments. The decision tree classifier previdtter results for both cases compared to the



Bayes classifier, although the Bayes classifier is used &ciséie best features with the SFFS. This
shows that the Bayes classifier is not capable of extractinglavant information that is present in the
features.

Fig. 1 on the last page shows the results for the classifitatite vs. the number of features when the
decision tree classifier was applied for both runs. Clearlyincreasing number of features yields a better
classification rate. Table Ill shows the features that atected by the SFFS algorithm for ten features.
The ordering reflects the time a feature was added to the.setheé first feature was selected first. The
best features to distinguish plosives from non-plosivesthe energy envelopes and energy bands.

Exp. 2: The second experiment is to differentiate between voicediyts, unvoiced plosives and
non-plosives. Fig. 2 on the last page shows the classifitatite vs. the number of features and Table IV
and V give the classification rate for a fixed and phone-basgthentation. Similar to Exp. 1, we have
a better balanced confusion matrix of ab@Q% from using the phone-based segmentation.

Table VI shows the best ten features that were selected bySHiES algorithm for the second
experiment. Beside the energy envelopes and energy baatisvére selected for Exp. 1, formant
frequencies and bandwidths were added to the feature set.

Exp. 3: The third experiment is to differentiate between each p®§ip/, /t/, /k/, /b/, /d/, /g/)
and non-plosives. For this experiment, the Bayes clasdfigrot considered anymore as it labels all
segments as non-plosives and the classification rate footther classes is therefore zero. The overall
classification rate for fixed and phone based segmentatiof.286 and73.9%, respectively. The better
overall classification rate for the fixed segmentation isyéner, due to the misclassification of plosives
as non-plosives as can be seen from the confusion matrix e ™l if compared to Table VIII. The
confusion matrix for phone-based segmentation is morenbaththan for fixed segmentation and therefore
should be preferred. Note, that the classification ratesfqy. 3 are not as good as for the other two
experiments. The phone-based segmentation is still bitéar the fixed segmentation, however, more
discriminating features are needed to obtain better edtily. 3 on the last page shows the classification
rate vs. the number of features.

Table IX shows the best ten features that are selected byRR& &lgorithm for the third experiment.

The selected features are similar to the features seleatdlxp. 2, but show a different order.

V. CONCLUSIONS

In this technical report, we have used a segmental cladsificapproach for the detection of plosives.

As this approach cannot by itself take the temporal charatts of plosives into account, we have



to provide this information by other means. We considerax bssibility that the unique boundaries
around the closure and burst structure of a plosive are kremvehwe have shown that this additional
information about phone boundaries does improve the dieesson rate significantly. Especially the
individual classification rate of the plosive classes igéased. Note, that we used only the mean feature
value for each phone. Better classification results areilplesisy using e.g. the standard deviation or the
minimum/maximum value for the phones. So far, we used thel¢abrovided by the TIMIT corpus, but
we plan to evaluate our classification architecture usirtgnased segmentations of the speech signal,
e.g. with the help of [11], [12].

Another future direction for our research is to find new feasufor the classification. One possiblity
is the estimation of the voice onset time (VOT) as it has baerngn to be helpful for the classification

of plosives [13].
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Classifier # Features

Classification Rate

Non-pl. PI. Overall

Decision Tree

1 87.8%  28.9%  78.0%
87.9% 38.4% 79.6%
88.1%  40.5%  80.2%

10 89.6% 51.0% 83.2%
1 73.5% 56.4% 70.6%
- 88.8% 48.6%  82.2%
Bayes Classifier
3 91.9% 35.2% 82.5%
10 55.5% 92.8% 82.3%

TABLE I: Exp. 1: Classification Rate (Fixed Segmentation)

Classification Rate

Classifier # Features
Non-pl. PI. Overall
1 82.6% 48.9% 72.8%
o 84.2% 57.3% T77.0%
Decision Tree
3 85.5% 60.4% 78.8%
10 89.4% 70.0% 84.2%

Bayes Classifien

64.8% 89.7%  71.5%
79.0% 83.2% 80.1%
3 81.1% 81.8% 81.3%
10 60.6% 94.3% 69.6%

TABLE II: Exp. 1: Classification Rate (Phoneme-based Sedren

Feature

Fixed Segm. ‘ Phoneme-based Segm.
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Low Pass Filtered Third Envelope

First Envelope

Second Envelope

Low Pass Filtered First Envelope

Low Pass Filt. 2nd Env,
Low Pass Filt. 4th Env.
Third Envelope
Sixth Band
Fourth Envelope
Fourth Band

Fourth Envelope
Third Envelope
Low Pass Filt. 2nd Env.
Low Pass Filt. 4th Env.
First Band
Sixth Band

TABLE Ill: Exp. 1: Selected Features



» Classification Rate
Classifier # Feat.
Non-pl. Vo. Pl.  Unv. Pl. Overall
1 88.9% 4.7% 13.8% 75.9%
o 2 88.7%  6.6%  16.5%  76.2%
Decision Tree
89.8%  25.2% 32.7% 79.9%
10 89.2%  27.8% 35.1% 79.8%
1 100.0%  0.0% 0.0% 83.4%
= 2 74.3%  0.0% 35.0%  66.0%
Bayes Classifier
3 60.0%  47.1% 78.0% 61.3%
10 84.4% 34.8%  32.5%  75.9%

TABLE IV: Exp. 2: Classification

Rate (Fixed Segmentation)

- Classification Rate
Classifier # Feat.
Non-pl.  Vo. Pl.  Unv. Pl.  Overall
1 83.8% 12.3% 31.1% 67.7%
o 2 83.2% 14.4% 32.7%  67.7%
Decision Tree
3 83.6% 19.0% 33.6%  68.6%
10 89.4%  41.5% 53.7% 78.5%
96.3%  0.0% 18.3%  73.4%
. 53.2% 62.1%  33.5%  51.0%
Bayes Classifien
3 65.4%  39.7% 55.9% 61.1%
10 63.7%  35.0% 86.9% 64.4%

TABLE V: Exp. 2: Classification Rate (Phoneme-based Segatiem)

Feature Fixed Segm. Phoneme-based Segm.
1 First Formant First Envelope
2 First Bandwidth Second Band
3 Fourth Bandwidth Second Envelope
4 Third Bandwidth Low Pass Filt. 2nd Env.
5 Low Pass Filt. 2nd Env, Third Bandwidth
6 Fourth Formant Fourth Bandwidth
7 Low Pass Filt. 4th Env. Third Envelope
8 Second Formant Low Pass Filt. 3rd Enw.
9 Third Formant Low Pass Filt. 4th Env.
10 Second Bandwidth Fourth Envelope

TABLE VI: Exp. 2: Selected Features



Nonpl o/ Jd) o/ o]t/ K/
Non-pl | 90.3% 0.5% 1.6% 0.7% 1.1% 3.0% 2.8%
/b/ 53.1% 17.4% 11.5% 2.8% 5.4% 6.6% 3.2%
/d/ 57.8% 3.8 182% 3.6% 2.7% 9.0% 4.9%
/g/ 58.1% 3.6% 9.0% 83% 2.5% 6.5% 12.1%
/p/ 66.2% 2.5% 3.5% 1.6% 8.5% 9.1% 8.6%
/t/ 68.5% 1.3% 5.6% 19% 3.4% 12.0% 7.4%
/k/ 63.3% 0.7% 3.1% 3.5% 3.3% 8.1% 18.0%

TABLE VII: Exp. 3: Confusion Matrix (10 Features, DecisiomeE, Fixed Segm.)

Nonpl o/ jd) o/ [o/ [t/ [k
Non-pl | 89.2% 1.1% 2.3% 1.0% 1.2% 2.9% 2.4%
/b/ 38.9% 24.6% 13.1% 4.4% 6.8% 7. 7% 4.6%
/d/ 40.3% 6.7% 23.0% 6.2% 3.6% 14.0% 6.2%
/g/ 38.8% 6.2% 13.0% 15.4% 2.5% 8.1% 16.1%
/p/ 36.7% 6.0% 6.0% 2.1% 18.7% 18.2% 12.4%
/t/ 42.7% 3.1% 11.3% 2.8% 6.8% 22.4% 10.9%
/k/ 34.3% 2.4% 5.7% 5.9% 5.5% 12.5% 33.9%

TABLE VIII: Exp. 3: Confusion Matrix (10 Features, Decisidmee, Phon.-based Segm.)

Feature Fixed Segm. ‘ Phoneme-based Segm.
1 Second Formant
2 Low Pass Filt. 2nd Env| First Formant
3 Third Formant Third Bandwidth
4 Fourth Formant Fourth Bandwidth
5 Fourth Bandwidth Low Pass Filt. 2nd Env.
6 Third Bandwidth Second Bandwidth
7 Second Bandwidth First Bandwidth
8 First Formant Third Formant
9 First Bandwidth Fourth Formant
10 Third Envelope Fourth Band

TABLE IX: Exp. 3: Selected Features
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