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Phone-based Plosive Detection
Andreas Madsack, Grzegorz Dogil, Stefan Uhlich, Yugu Zeng and Bin Yang

Abstract

We compare two segmentation approaches to plosive detection: One aproach is using a uniform

segmentation of the speech signal to10 ms slices whereas the other assumes additional information

about the start and end of each phone and uses these values as segmentation boundaries. We show

that including this information yields significantly better results than using a uniform segmentation. We

test both approaches in three different experiments using the TIMIT corpus: plosive vs. non-plosive

recognition, voiced vs. unvoiced plosive detection and individual plosive classification.

Index Terms

Plosive detection, Segmentation, Pattern recognition

I. INTRODUCTION

The purpose of this technical report is to present a statistical classification framework for plosive

detection. In contrast to the traditionally applied methods which use information of the signal before

and after the relevant time frame [1] we perform a decision for each individual speech segment. Our

approach can be summarized as follows: First, segment the speech signal into blocks of either a fixed

size of10 ms or a variable size that exploits additional information on the start and end of each phone,

second perform a decision for each segment to which class it belongs.

A segmentwise approach does not require training a HMM, which is computational demanding. We can

use simple classification schemes such as the Bayes classifiers [2] which are more efficient. However, there

is a clear disadvantage to our phone-driven approach. Plosives are phonetically not uniform segments.
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To the contrary, they consist of two seperate temporal phases: a silence phase at the beginning (e.g. the

average length in TIMIT is57.1 ms) which is followed by the burst and the release phase (e.g.the

average length in TIMIT is38.5 ms). HMM-based approaches are by nature more suited to cope with

this temporal characteristic. Our goal is therefore to find asimple but effective classification method

which works on a phonetic basis and yields at least the same performance as a HMM-based system. The

closure–burst phonetic structure of each plosive is well preserved in the speech signal and the boundaries

of this unique phonetic structure are very clearly matched.In our experiments we use this natural phonetic

segmentation of a plosive and assume that its boundaries areknown. We will investigate the possible

performance improvement by such an adaptive segmentation in comparison to a fixed segmentation.

This is a first step into developing a phonetic knowledge-based detection system which, together with

supra-segmental features [3], will enhance the detection results.

The detection of plosives from speech signals is a “tough” problem in phonetics and speech recognition

but it is also an important step in many speech applications.E.g. for the coding of speech it might be

advantageous to know the position of the plosive sounds and to model them independently as this helps

to improve the reconstructed speech quality, see [4]. Some work has been done in designing classifiers

that avoid an HMM-based approach. In [5], a detector is considered that marks the time between a

closure–burst transition. Another approach is the knowledge-based landmark detector from [6] which is

used to distinguish plosive from non-plosive segments. This corresponds to our first experiment.

This report is organized as follows: In Sec. II, we summarizethe three experiments which we conduct.

Starting from the easiest task, which is to decide whether a plosive is present or not, we differentiate

in the second task between voiced plosives and unvoiced plosives. Finally, the last task is the detection

of each plosive individually. Sec. III gives a detailed description of the used features which yield the

simulation results in Sec. IV. We show that using the additional timing information of the start and end

of each phone improves the simulation results significantly.

II. EXPERIMENTS AND SETUP

We use the TIMIT corpus [7] for our three experiments becauseof its meticulous phonetic transcription

for each speech file. We use TIMIT as ground truth for each segment to determine the class it belongs

to. The three experiments that we conduct are

Exp. 1: Plosive vs. non-plosive classification where closures that belong to the plosive are treated as

part of the plosive. Using the TIMIT notation, we try to detect all segments that belong to{/b/,

/p/, /d/, /t/, /k/, /g/, /q/} and the corresponding closure labels as well.
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Exp. 2: A three-way classification: voiced plosives, unvoiced plosives and non-plosives, i.e. we have

now three classes:{/b/, /d/, /g/ + closures}, {/p/, /t/, /k/ + closures,/q/} and the class

of all non-plosives.

Exp. 3:Detection of individual plosives, i.e. we have in total seven classes, i.e. six plosive classes{/b/},

{/p/}, {/d/}, {/t/}, {/k/}, {/g/} and one non-plosive class. This is the most challenging

task of all three experiments.

Each experiment is performed twice: In the first run, we segmentize the speech signal in blocks of10

ms length. For each block, we do a separate classification. The second run uses also a segmentation but

the segments are chosen to be identical with the position of each phone as it is annotated in the TIMIT

corpus. We compare both runs to evaluate the performance loss if no timing information is used as in

the first run. The complete training and test parts of the TIMIT corpus are used for the training and

evaluation, respectively.

As classifiers, we use the well-known Bayes and decision treeclassifiers [2]. For the Bayes classifier,

we assume the feature distribution for each class to be multivariate Gaussian. This classifier is especially

suited for our experiments as we have a large number of training and classification patterns, and the

Bayes classifier with a multivariate Gaussian distributionis known to be very efficient with respect to

its computational complexity. As feature selection algorithm, we use the well-known Sequential Floating

Forward Selection (SFFS) algorithm from [8]. However, we modified the SFFS to take the classification

rate for each class into account instead of only consideringthe overall classification rate. This is important

as the relative occurrence frequency of the classes differ substantially, e.g. for the detection of plosives

vs. non-plosives where the percentage of plosives is relatively small. Without a modification of the SFFS,

the classifier would label plosives as non-plosives and by that simple scheme it would achieve a high

overall detection rate which is undesirable. Especially the Bayes classifier is prone to that error. Note,

that another possibility to deal with the small number of plosives would be a training set regularization

where we e.g. randomly choose only as many non-plosives as wehave plosives.

III. F EATURES

In this section, we introduce the features that we used for the detection of plosives. All features are

based on a10 ms segmentation. For the case that we use the start and end of aphone to segment the

speech signal,we calculate the feature values for all10 ms segments that fall into the phone interval and

then use the average operator to obtain the features.
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A. Energy Bands [6]

The first group of features that we use are energy bands [6]. Wecalculate one energy value for each

10 ms time segment in our experiment. The bands are defined as thefrequency intervals0 Hz− 400 Hz,

800 Hz−1500 Hz, 1200 Hz−2000 Hz, 2000 Hz−3500 Hz, 3500 Hz−5000 Hz, and5000 Hz−8000 Hz.

B. Energy Envelopes [9]

The next group of features are energy envelopes. Energy envelopes dynamically split the frequency

spectrum into bands, depending on the number of bands that should be used. For our experiments, we

used four bands which results in the following frequency intervals:1Hz−8Hz, 8Hz−70Hz, 70Hz−594Hz

and594Hz−5000Hz. This division corresponds to the results given by [9]. Here too, one energy value is

calculated for each time segment. Furthermore, we used a lowpass-filtered version of these as additional

features.

C. Formant Frequencies and Bandwidths [10]

Another set of features are the formant frequencies and their bandwidth. They are calculated using the

LPC approach to obtain an all-pole vocal tract model. Each conjugate complex zero pair corresponds to

one formant frequency and its distance to the unit circle gives the bandwith. We use the formulas
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to map a polepn of the all-pole model to its frequencyF and bandwidthB. The first four formant

frequencies and the first four formant bandwidths are used asfeatures for detection of classifiers.

IV. SIMULATION RESULTS

Exp. 1: The first experiment is plosive vs. non-plosive classification where closures that belong to

the plosive are treated as part of the plosive. The results are shown in Table I and II for the case of a fixed

and phone-based segmentation. Comparing both tables, we see that the overall classification rate is in the

same range for both runs. For the second run, however, the confusion matrix is better balanced between

the two classes. The good classification rate for the first runis due to the misclassification of plosives

as non-plosives. The reason for this is that we have 236 565 plosive segments opposed to 1 184 951

non-plosive segments. The decision tree classifier provides better results for both cases compared to the
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Bayes classifier, although the Bayes classifier is used to select the best features with the SFFS. This

shows that the Bayes classifier is not capable of extracting all relevant information that is present in the

features.

Fig. 1 on the last page shows the results for the classification rate vs. the number of features when the

decision tree classifier was applied for both runs. Clearly,an increasing number of features yields a better

classification rate. Table III shows the features that are selected by the SFFS algorithm for ten features.

The ordering reflects the time a feature was added to the set, i.e. the first feature was selected first. The

best features to distinguish plosives from non-plosives are the energy envelopes and energy bands.

Exp. 2: The second experiment is to differentiate between voiced plosives, unvoiced plosives and

non-plosives. Fig. 2 on the last page shows the classification rate vs. the number of features and Table IV

and V give the classification rate for a fixed and phone-based segmentation. Similar to Exp. 1, we have

a better balanced confusion matrix of about10% from using the phone-based segmentation.

Table VI shows the best ten features that were selected by theSFFS algorithm for the second

experiment. Beside the energy envelopes and energy bands that were selected for Exp. 1, formant

frequencies and bandwidths were added to the feature set.

Exp. 3: The third experiment is to differentiate between each plosive (/p/, /t/, /k/, /b/, /d/, /g/)

and non-plosives. For this experiment, the Bayes classifieris not considered anymore as it labels all

segments as non-plosives and the classification rate for theother classes is therefore zero. The overall

classification rate for fixed and phone based segmentation is79.2% and73.9%, respectively. The better

overall classification rate for the fixed segmentation is, however, due to the misclassification of plosives

as non-plosives as can be seen from the confusion matrix in Table VII if compared to Table VIII. The

confusion matrix for phone-based segmentation is more balanced than for fixed segmentation and therefore

should be preferred. Note, that the classification rates forExp. 3 are not as good as for the other two

experiments. The phone-based segmentation is still betterthan the fixed segmentation, however, more

discriminating features are needed to obtain better results. Fig. 3 on the last page shows the classification

rate vs. the number of features.

Table IX shows the best ten features that are selected by the SFFS algorithm for the third experiment.

The selected features are similar to the features selected for Exp. 2, but show a different order.

V. CONCLUSIONS

In this technical report, we have used a segmental classification approach for the detection of plosives.

As this approach cannot by itself take the temporal characteristics of plosives into account, we have
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to provide this information by other means. We considered the possibility that the unique boundaries

around the closure and burst structure of a plosive are knownand we have shown that this additional

information about phone boundaries does improve the classification rate significantly. Especially the

individual classification rate of the plosive classes is increased. Note, that we used only the mean feature

value for each phone. Better classification results are possible by using e.g. the standard deviation or the

minimum/maximum value for the phones. So far, we used the labels provided by the TIMIT corpus, but

we plan to evaluate our classification architecture using estimated segmentations of the speech signal,

e.g. with the help of [11], [12].

Another future direction for our research is to find new features for the classification. One possiblity

is the estimation of the voice onset time (VOT) as it has been proven to be helpful for the classification

of plosives [13].
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Classifier # Features
Classification Rate

Non-pl. Pl. Overall

Decision Tree

1 87.8% 28.9% 78.0%

2 87.9% 38.4% 79.6%

3 88.1% 40.5% 80.2%

10 89.6% 51.0% 83.2%

Bayes Classifier

1 73.5% 56.4% 70.6%

2 88.8% 48.6% 82.2%

3 91.9% 35.2% 82.5%

10 55.5% 92.8% 82.3%

TABLE I: Exp. 1: Classification Rate (Fixed Segmentation)

Classifier # Features
Classification Rate

Non-pl. Pl. Overall

Decision Tree

1 82.6% 48.9% 72.8%

2 84.2% 57.3% 77.0%

3 85.5% 60.4% 78.8%

10 89.4% 70.0% 84.2%

Bayes Classifier

1 64.8% 89.7% 71.5%

2 79.0% 83.2% 80.1%

3 81.1% 81.8% 81.3%

10 60.6% 94.3% 69.6%

TABLE II: Exp. 1: Classification Rate (Phoneme-based Segment.)

Feature Fixed Segm. Phoneme-based Segm.

1 Low Pass Filtered Third Envelope

2 First Envelope

3 Second Envelope

4 Low Pass Filtered First Envelope

5 Low Pass Filt. 2nd Env. Fourth Envelope

6 Low Pass Filt. 4th Env. Third Envelope

7 Third Envelope Low Pass Filt. 2nd Env.

8 Sixth Band Low Pass Filt. 4th Env.

9 Fourth Envelope First Band

10 Fourth Band Sixth Band

TABLE III: Exp. 1: Selected Features
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Classifier # Feat.
Classification Rate

Non-pl. Vo. Pl. Unv. Pl. Overall

Decision Tree

1 88.9% 4.7% 13.8% 75.9%

2 88.7% 6.6% 16.5% 76.2%

3 89.8% 25.2% 32.7% 79.9%

10 89.2% 27.8% 35.1% 79.8%

Bayes Classifier

1 100.0% 0.0% 0.0% 83.4%

2 74.3% 0.0% 35.0% 66.0%

3 60.0% 47.1% 78.0% 61.3%

10 84.4% 34.8% 32.5% 75.9%

TABLE IV: Exp. 2: Classification Rate (Fixed Segmentation)

Classifier # Feat.
Classification Rate

Non-pl. Vo. Pl. Unv. Pl. Overall

Decision Tree

1 83.8% 12.3% 31.1% 67.7%

2 83.2% 14.4% 32.7% 67.7%

3 83.6% 19.0% 33.6% 68.6%

10 89.4% 41.5% 53.7% 78.5%

Bayes Classifier

1 96.3% 0.0% 18.3% 73.4%

2 53.2% 62.1% 33.5% 51.0%

3 65.4% 39.7% 55.9% 61.1%

10 63.7% 35.0% 86.9% 64.4%

TABLE V: Exp. 2: Classification Rate (Phoneme-based Segmentation)

Feature Fixed Segm. Phoneme-based Segm.

1 First Formant First Envelope

2 First Bandwidth Second Band

3 Fourth Bandwidth Second Envelope

4 Third Bandwidth Low Pass Filt. 2nd Env.

5 Low Pass Filt. 2nd Env. Third Bandwidth

6 Fourth Formant Fourth Bandwidth

7 Low Pass Filt. 4th Env. Third Envelope

8 Second Formant Low Pass Filt. 3rd Env.

9 Third Formant Low Pass Filt. 4th Env.

10 Second Bandwidth Fourth Envelope

TABLE VI: Exp. 2: Selected Features
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Non-pl /b/ /d/ /g/ /p/ /t/ /k/

Non-pl 90.3% 0.5% 1.6% 0.7% 1.1% 3.0% 2.8%

/b/ 53.1% 17.4% 11.5% 2.8% 5.4% 6.6% 3.2%

/d/ 57.8% 3.8% 18.2% 3.6% 2.7% 9.0% 4.9%

/g/ 58.1% 3.6% 9.0% 8.3% 2.5% 6.5% 12.1%

/p/ 66.2% 2.5% 3.5% 1.6% 8.5% 9.1% 8.6%

/t/ 68.5% 1.3% 5.6% 1.9% 3.4% 12.0% 7.4%

/k/ 63.3% 0.7% 3.1% 3.5% 3.3% 8.1% 18.0%

TABLE VII: Exp. 3: Confusion Matrix (10 Features, Decision Tree, Fixed Segm.)

Non-pl /b/ /d/ /g/ /p/ /t/ /k/

Non-pl 89.2% 1.1% 2.3% 1.0% 1.2% 2.9% 2.4%

/b/ 38.9% 24.6% 13.1% 4.4% 6.8% 7.7% 4.6%

/d/ 40.3% 6.7% 23.0% 6.2% 3.6% 14.0% 6.2%

/g/ 38.8% 6.2% 13.0% 15.4% 2.5% 8.1% 16.1%

/p/ 36.7% 6.0% 6.0% 2.1% 18.7% 18.2% 12.4%

/t/ 42.7% 3.1% 11.3% 2.8% 6.8% 22.4% 10.9%

/k/ 34.3% 2.4% 5.7% 5.9% 5.5% 12.5% 33.9%

TABLE VIII: Exp. 3: Confusion Matrix (10 Features, DecisionTree, Phon.-based Segm.)

Feature Fixed Segm. Phoneme-based Segm.

1 Second Formant

2 Low Pass Filt. 2nd Env. First Formant

3 Third Formant Third Bandwidth

4 Fourth Formant Fourth Bandwidth

5 Fourth Bandwidth Low Pass Filt. 2nd Env.

6 Third Bandwidth Second Bandwidth

7 Second Bandwidth First Bandwidth

8 First Formant Third Formant

9 First Bandwidth Fourth Formant

10 Third Envelope Fourth Band

TABLE IX: Exp. 3: Selected Features
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Fig. 1: Exp. 1: Number of Features vs. Classification Rate forDecision Tree Classifier

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.8

0.9

1

 

 

Non−pl, Fixed
Pl−voiced, Fixed
Pl−unvoiced, Fixed
Non−pl, Per Phone
Pl−voiced, Per Phone
Pl−unvoiced, Per Phone

C
la

ss
ifi

ca
tio

n
R

a
te

pe
r

C
la

ss

Number of Features

≈

Fig. 2: Exp. 2: Number of Features vs. Classification Rate forDecision Tree Classifier



11

5 10 15 20
0

0.1

0.2

0.3

0.4

0.8

0.9

 

 

Non−pl, Fixed
b, Fixed
d, Fixed
g, Fixed
p, Fixed
t, Fixed
k, Fixed
Non−pl Per Phone
b, Per Phone
d, Per Phone
g, Per Phone
p, Per Phone
t, Per Phone
k, Per PhoneC

la
ss

ifi
ca

tio
n

R
a

te
pe

r
C

la
ss

Number of Features

≈

Fig. 3: Exp. 3: Number of Features vs. Classification Rate forDecision Tree Classifier


