MGK course

Friday, 24th July 2015, IMS

Sabine Zerbian

Topics

- General overview of phonological theories
- Interface between phonology and morphology
- Tour d'horizon:
 - Basic Phonetics & Phonology
 - Optimality Theory
 - Phonology-Morphology Interface

Phonological theories

- 'rule'-based approaches (including generative and optimality models) rely on abstraction and seek to account for regularity and generality
- Usage-based models (like exemplar theory) rely on concrete representations, eschewing abstraction; they typically seek to account for lexically differentiated phonological phenomena, including variability, gradience and probabilistic properties.

Linking usage and grammar: Generative phonology, exemplar theory, and variable rules - ResearchGate. Available from: http://www.researchgate.net/publication/261103813 Linking usage and g rammar Generative phonology exemplar theory and variable rules [accessed Jul 23, 2015].

Theories of representation and derivation

Theories of derivation/computation

- Rule-based
- Constraint-based
 - Optimality Theory (OT)

Theories of representation

- internal structure of sounds: feature geometry
- tone + assimilation: autosegmental theory -
- stress: metrical theory/feet

 intonation: autosegmentalmetrical theory (H*L, H%)

Theories of derivation

Rule-based analyses

- found in introductory textbooks
- language-specific rules
- rule format: A \rightarrow B / C__D

Constraint-based analyses

- Optimality Theory (OT)
- mainstream phonological theory
- universal constraints
- language-specific ranking

Final devoicing in German - Data

Lob	[lo:p]	lob+e	[lo:be]
Rad	[Ra:t]	Rad+es	[Ra:dəs]
Тад	[ta:k]	Tag+e	[ta:gə]
Nerv	[nɛʀf]	nerv+ös	[nɛʀvø:s]
Haus	[haʊs]	Haus+es	[haʊz+əs]
orange	[?окаŋʃ]	Orange	[?окаŋʒə]

Final devoicing - Rule-based approach

FD: $/b dg v z / \rightarrow [ptkfs] /]_{\sigma}$ [-son] $\rightarrow [-voice] /]_{\sigma}$

Underlying representation/hand//bank/FDhantn/aSurface form[hant][bank]

Optimality Theory

- Theory of derivation/computation; not of representation
- Languages of the world are characterized by tendencies which are in conflict with each other
- Certain challenge: opacity
- E.g. plural formation in Singapore English

Plural formation in Singapore English

- Example: *kiss*[əz], *nos*[əz]
- *lift, list, task* \rightarrow [lif, lis, ta:s]
- plural: [lifs, lis, taːs] but *[lisəz, taːsəz]
- independent evidence for presence of plosives at underlying level of representation comes from verbs: *lif*[t]*ing*, *lis*[t]*ing*, *tas*[k]*ing*

Architecture of OT

Constraints in OT

- violable
- ranked, i.e. not of equal importance
- universal; i.e. hold in all languages

Three types:

- Markedness constraints (e.g. NOCODA, ONSET)
- Faithfulness constraints (correspondence constraints)
- Alignment constraints

Final devoicing - Constraint-based approach

Constraints: *VOICEDCODA – "Codas are voiceless" IDENT-IO – "Be faithful to the input"

German

/hand/	*VOICEDCODA	Ident-IO
[hand]	*!	
🖙 [hant]		*

English

/hænd/	Ident-IO	*VoicedCoda
☞ [hænd]		*
[hænt]	*!	

Phonology-morphology interface

- Phonological alternations which are not only triggered by phonological context but also by morphological context
- Examples
 - velar softening; *electri[k]* ~ *electri[s]+ity*; but: *[k]ing* not **[s]ing*
 - trisyllabic laxing; *div[ai]n* ~ *div[ı]n+ity*; but: *n[ai]tingale* not **n[ı]tingale*
 - voicing assimilation in English plural, past tense, 3rd p.sg., and genitive-s; but: *fe[ns]* not **fe[nz]*, *that zoo* not **that [I]zoo*

English plural - Data

(a)	faces	[feɪsɪz]	(b)	lips	[lıps]
	phases	[feɪzɪz]		hats	[hæts]
	dishes	[dı∫ız]		snakes	[snɛıks]
	beaches	[biːt∫ız]		giraffes	[dʒəˈrɑːfs]
	bridges	[brɪdʒɪz]		myths	[mıθs]

(c)	labs	[læbz]
	seeds	[si:dz]
	bags	[bægz]
	waves	[wɛıvz]
	lathes	[lɛıð͡z]
	aims	[ɛımz]
	fans	[fænz]
	rings	[ɹɪŋz]
	hills	[hɪɫz]
	ears	[i:Jz]
	bees	[bi:z]
	guys	[gaız]

English plural - generalizations

(i) after sibilants (s-sounds) = [IZ]

(ii) after voiceless consonants = [s]

(iii) after voiced sounds = [z]

English plural – Rule-based approach

Assimilation:

[+strid] \rightarrow [α voice] / [α voice] ____

Rule ordering

Underlying	/ıæt+Z/	/kJæb+Z/	/li:ʧ+Z/
Insertion	n/a	n/a	/li:ʧıZ/
Assimilation	/Jæts/	/kJæbz/	/li:ʧız/
Surface	√/Jæts/	√/kıæbz/	✓/li:ʧız/

Underlying	/Jæt+Z/	/kıæb+Z/	/li:ʧ+Z/
Assimilation	/Jæts/	/kɹæbz/	/li:ʧs/
Insertion	n/a	n/a	/li:ʧıs/
Surface	√/Jæts/	√/kıæbz/	€ [™] /li:ʧıs/

English plural – Constraint-based approach

English plural formation in OT

Constraints:

- NoSib-Sib: Two sibilants cannot be adjacent
- VOICING: Two consonants in a cluster must agree in voicing
- ALIGN(stem R, affix L): the suffix follows the noun
- LEFT-ANCHOR_{plural}: positional faithfulness, initial plural segment immediately follows the stem

Note:

- The constraints themselves and the ranking of the constraints is the same.
- Optimal candidates can and do violate constraints.

/Jæt+Z/	Νοδιβ-διβ	Voicing	ALIGN(stem R, affix L)	LEFT-ANCHOR _{plural}
Jætz		*!		
∉Jæts				
zıæt			*!	
Jætiz				*i

/li:ʧ+Z/	Νοδιβ-διβ	Voicing	ALIGN(stem R, affix L)	LEFT-ANCHOR _{plural}
li:ʧz	*!	*		
li:ʧs	*!			
zli:ʧ			*!	
☞li:ʧız				*

/kıæb+Z/	Νοδιβ-διβ	Voicing	ALIGN(stem R, affix L)	LEFT-ANCHOR _{plural}
r≊kıæbz				
kıæbs		*!		
zkıæb			*i	*
kıæbız				*i

The phonology-morphology interface

Reconsider:

VOICING: Two consonants in a cluster must agree in voicing but *fe[ns]* not **fe[nz]*

Phonological rules and/or constraints might hold in certain morphological or morphosyntactic contexts only (e.g. +)

- Lexical phonology & morphology
- Prosodic Hierarchy

Kiparsky's model of the English lexicon (1985)

Example: Level 1 affixation

Lexicon	[ˈnɛɪʃən] _N + [əl] _{aff} + [ɪtɪ] _{aff}
Morphological rule	[[ˈnɛɪʃən] _N + [əl] _{aff}] _Α
Phonological rule: trisyllabic laxing	/ˈnæʃənəl/
Morphological rule	[[ˈnæʃənəl] _A + [ıtı] _{aff}] _N
Phonological rule: stress shift + vowel change	/ˌnæʃəˈnæləti/

Kiparsky's model of the English lexicon (1985)

Properties of rules - Overview

Lexical rules

- a. Don't operate across word boundaries
- b. Apply before all postlexical rules
- c. Can refer to morphological information
- d. Can have exceptions
- e. Are structure preserving
- f. Apply cyclically

Postlexical rules

- a. Can operate across word boundaries
- b. Apply after all lexical rules have applied
- c. Cannot refer to morphological information
- d. Cannot have exceptions
- e. Need not be structure preserving
- f. Apply only once

Recent theories of phonology-morphology interface

- Multiple Grammar Theories: a language has multiple subgrammars, each indexed to one or more morphological constructions or lexical strata. Each subgrammar is composed of fully general rules and constraints (e.g. **Cophonology**, Orgun 1996, Antilla 1997, Inkelas 1998).
- Single Grammar Theories: each language has a single phonological grammar, including
 - fully general phonological rules or constraints,
 - rules or constraints indexed to particular morphological environments (Chomsky & Halle 1968, Itô & Mester 1995, Benua 1997, ...).
- any individual morphologically conditioned phonological pattern can easily be modelled in either of these two general ways
- the only way to distinguish between the Single and Multiple Grammar Theories is to look at a language as a whole, taking all of its morphologically conditioned alternations into account (Inkelas 2014:11):

Reminder for GRADUS students

- To get 6 ECTS for this course as required by GRADUS:
- show that you can think beyond your work/your dissertation topic;
 e.g.
 - a proposal for collaborations within the SFB or outside;
 - invite person and write about work with him or her
- deadline: end of September
- send to Cornelia Ebert