Anaphora resolution and reambiguation”

Fritz Hamm and Torgrim Solstad
IMS University of Stuttgart

Summary Starting off from common assumptions on the relationship between am-
biguity and the process of disambiguation with regard to the technique of underspec-
ification, we argue that disambiugation may be viewed as non-monotonic in nature in
certain cases involving anaphora resolution. We then go on to present a formal analysis
framed in a coupling of Discourse Representation Theory and Constraint Logic Pro-
gramming. Concluding the paper, we also discuss some consequences of our proposal
for formal discourse semantics in general.

1 Introduction

Lexical ambiguity and its resolution is mostly only approached from an inter-sentential
perspective. Thus, when accounting for the disambiguation of a polysemous lexical
item, one mostly studies how other lexical items that modify or select the lexical item
in question, behave. In this paper, we will argue that there are important insights to
be gained with regard to disambiguation by studying more closely how disambiguated
expressions behave in contexts spanning more than one sentence. More specifically, we
will study cases of anaphora resolution involving antecedents which are disambiguated
and anaphora which refer to one of the possible readings of the antecedent which was
not selected in the disambiugating antecedent context. We will argue that such cases
call for what we term a reambiguation of the antecedent expression, reintroducing an
interpretation which was originally excluded. The paper is structured as follows. In
Section[2] we discuss properties of ambiguity, underspecification and disambiguation.
We also provide an informal overview of our approach, including a discussion of the
notion of reambiguation. In Section 3] the formal basis of our analysis is presented. In
Section 4 we present the analysis and in Section 4.2] we discuss the consequences of
our approach for formal discourse semantics in general. Section [5|concludes the paper.

*We would like to thank Hans Kamp, Uwe Reyle, Arndt Riester, Antje RoBdeutscher and the audi-
ence at CSSP 2009 in Paris for valuable discussion. The research reported here was supported by the
projects B4 and D1 of the Collaborative Research Centre “Incremental Specification in Context” (SFB
732) at the University of Stuttgart.

2 Disambiguation and Underspecification

Ambiguities are often represented formally by means of underspecification. Depend-
ing on its purpose, the underspecified representation is often thought to be a compact
representation of the possible contextual specifications of the ambiguity. These are as-
pects of underspecification which we will not be concerned with here. Rather, we will
discuss the relationship between ambiguity and disambiguation with regard to under-
specification.

One standard for representing lexical (or scopal) ambiguities by means of under-
specification is to formalize the range of interpretations of an expression by means
of disjunction (Reyle 1993) or conjunction (Poesio 1996). In the UDRT approach of
Reyle, for instance, underspecification is represented by means of the disjunctive oper-
ator v, cf. the simplified representation of the two-way ambiguous deverbal nominal-
ization delivery in|(1)

a:e¢a:y
ey <0C e: deliver(x,y) >

AGENT(e)=x
THEME(e)=y

More specifically, the representation in[(T)]shows the semantic representation for deliv-
ery at NP level. In o represents the referential argument of the noun phrase which
is assumed to be bound at DP leve. As indicated in the first line of the condition part
of this representation, the referential argument a of delivery may either be an event or
an object, the latter corresponding to the theme of the verb deliver.

Assuming a disjunct or conjunct representation of ambiguous expressions, disam-
biguation is often viewed as a process of disjunct or conjunct deletion. Thus, the dis-
ambiguating contexts for delivery in|(2)| are often thought to lead to a deletion of the
first or second disjunct in the DRS condition in

) a. the damaged delivery (ee=- Vo= y)
b. the quick delivery (ot = ¢ v o=y)

In damaged is assumed to combine only with the object reading of delivery,
whereas quick selects only the event reading.

Our data will mainly involve German deverbal nominalizations. More specifically,
we will present a study of nouns derived by means of the suffix -ung (comparable
both to -tion and -ing nominalizations in English). While all productively derived -
ung nouns have an event reading, quite a few -ung derivations additionally have state
and/or object readings, cf. the examples in|(3)} involving Absperrung (from absperren
‘cordon oft”), which is three-way ambiguous:

!'Similar remarks may be made for Poesio’s (1996) disambiguation inference mechanism.

2

3) a. Die Absperrung wird morgen abgebaut.

the barrier will be tomorrow dismantled
“The barrier will be dismantled tomorrow.’

b. Die Absperrung des Gebiets wird noch aufrecht erhalten.
the cordoning-off the area is still sustained
‘The cordoning-off of the area is still sustained.’

c. Die Absperrung des Gebiets wurde von den Demonstranten behindert.
the cordoning-off the area was by the protesters hampered
‘The cordoning-off of the area was hampered by the protesters.’

All noun phrases headed by Absperrung in|(3)|are disambiguated in context: the pred-
icate abbauen ‘dismantle’ is assumed to select for object interpretations, aufrecht
erhalten ‘sustain’ [(3b)| for states and behindern ‘hamper’ for event interpretations
(for details see Hamm & Kamp 2009). A simplified, underspecified semantic represen-
tation covering all three readings is provided in|(4)| Briefly stated, Absperrung involves
an event e leading to a state s in which the (incremental) theme y blocks access to some
region z. Again, the topmost condition of the representation provides information on
the possible referential arguments of the noun: it may be an event (e), a state (s) or an
object (y).

d=evo=svo=y
4) <0C e CAUSE s >
s: block(y,z)
AGENT(e)=x

Taking the above disambiguating contexts of Absperrung as a starting point, one
can show that for anaphora resolution, a naive deletion approach to disambiguation
makes the wrong predicitions, cf. the sequence in

) Die Absperrung des Rathauses wurde vorgestern von Demonstranten behin-
dert. Wegen anhaltender Unruhen wird sie auch heute aufrecht erhalten.
‘The cordoning-off of the town hall was disturbed by protesters the day be-
fore yesterday. Due to continuing unrest, it [the state of being cordoned off] is
sustained today as well.’

In [(5)} the anaphora sie ‘it’ is clearly coreferential with the noun phrase headed by
Absperrung in the first sentence. As just stated, the predicate behindern ‘hamper’ re-
stricts the ambiguity of Die Absperrung des Rathauses and fixes an event reading of
the noun phrase. However, the matrix predicate in the second sentence, aufrecht er-
halten ‘sustain’, only allows the referential argument of the anaphora sie to be a state.
But if the fixation of the event reading, i.e. the disambiguation of Absperrung, involves
the irreversible deletion of its other possible referential arguments, there should be no
appropriate discourse referent for sie to pick up, contrary to intuitions.

Let us briefly remark that a sloppy approach within centering theory (cf. e.g. Hardt
2003) does not seem to offer a straightforward solution, since center shifting is not
available if the relevant discourse referent has been elided in the preceding context.
Attempting to avoid the problem by assuming that disambiguation does not involve any
deletion whatsoever is no option (this is the “lazy” option discussed also by Hardt), as
this would predict that every possible discourse referent of a noun is always available
in subsequent sentences. The following example, which we will discuss below, shows
that this is not the case:

(6) #Die Absperrung wurde heute verstdrkt. Sie war am Vortag massiv behindert
worden.
Intended: “The barrier was fortified today. It [the cordoning-off] had been mas-
sively hampered the day before.’

Before turning to the formal details of our analysis, we would like to give its main
characteristics in informal terms. To account for the acceptability of examples such as
(5), we reconstruct the required result state which the anaphora sie makes reference to.
We show that such a reconstruction is possible even under the assumption that behin-
dern erases the result state reading of the first sentence in[(5)} This is achieved in a pro-
cess of reambiguation, which involves a three-step procedure of inference, reification
(turning a predicate into a term) and uniﬁcation This reconstructed result state then
serves as a suitable antecedent for the anaphoric pronoun sie of the second sentence in
More specifically, the procedure may be described as follows: Although there is no
semantically suitable antecedent for the pronominal anaphora sie in |(5), one can cer-
tainly assume that the discourse referent of the anaphora will necessarily be identified
with the referent of the DP die Absperrung des Rathauses, based on the constraints
on referential identification for the discourse referent introduced by sie, taking gen-
der (which excludes the referent of Rathaus) and number (which excludes the referent
of Demonstranten)). These constraints trigger a mapping from the event denotation of
die Absperrung des Rathauses to the result state, involving a non-monotonic inferential
process. The following pieces of information are of relevance for this process:

e The semantics of Absperrung, which derives from the verb absperren, involves
an object (y), which incrementally constructed in order to block access to a re-
gion (z), i.e. the agent of the event causes a state (s) of inaccessibility for the
region (z).

2Concerning the notion of reambiguation, it should be noted that the process of reambiguating may
involve a complete recovery of all readings which were deleted in previous context, cf. where ig-
norieren allows sie to have a referential argument of all three possible types (object, event and result
state), whereas the Absperrung-DP in the first sentence clearly only has an event reading:

(6)) Die Absperrung des Rathauses wurde von Demonstranten behindert. Spiter haben sie alle ig-
noriert.

e The referential argument of the predicate aufrecht erhalten is of result state type,
while the one of behindern is of event type.

e The properties of the pronoun sie — its referent needs to be identified with one
which is introduced by a DP — requires a mapping from the event referent of the
DP die Absperrung des Rathauses to the result state of being cordoned off. This
state is accessible via the semantics of the predicate absperren. The mapping
from the event to the state consists in an abstraction over the times for which
the predicate holds (from absperr (e, t) to the reified absperr [e,7]). This set
of times can in principle both be that for which the process of cordoning-off
holds as well as the one for which the result state holds. In our analysis, we only
exploit the latter possibility, since we assume that the predicate aufrecht erhalten
‘sustain’ only applies to result states.

e Consequently, a non-monotonic inferential process is initiated, in which the
coming about of the result state of being cordoned off is inferred from the oc-
currence of the process of cordoning-off.

Moreover, the inference which is triggered by behindern and blocked by verhin-
dern respectively allows an explanation of the difference concerning the possibility of
anaphora resolution in versus|(7)

(7) #Die Absperrung des Rathauses wurde vorgestern von Demonstraten verhindert.
Wegen anhaltender Unruhen wird sie auch heute aufrecht erhalten.
‘The cordoning-off of the town hall was prevented by protesters the day be-
fore yesterday. Due to continuing unrest, it [the state of being cordoned off] is
sustained today as well.’

The problematic case in [(8)]is accounted for under the assumption that objects are
represented by predicates without temporal parameter. In this case, anaphora resolution
is correctly blocked, since the above depicted three-step procedure involving inference,
reification and unification is not applicable for predicates without temporal parameters.

(8) #Die Absperrung wurde heute verstdrkt. Sie war am Vortag massiv behindert
worden.
Intended: “The barrier was fortified today. It [the cordoning-off] had been mas-
sively hampered the day before.’

We now turn to a formalisation of the above description.

3 Event Calculus

Before we start to develop integrity constraints and programs for DRSs, we will give
a short informal introduction to the event calculus. For a much more comprehensive

introduction the reader is referred to van Lambalgen & Hamm (2005). The event calcu-
lus was originally developed on the basis of McCarthy’s situation calculus (McCarthy
& Hayes 1969) by Kowalski & Sergot (1986) and Shanahan (1997) and used for high
level control of mobile robots. The theoretical aim pursued with this calculus was the
solution of the frame problem in Artificial Intelligence.

3.1 Linguistic Motivation
Consider the following short piece of discourse:
9) It was hot. Jean took off his sweater.

We naturally understand that the eventuality expressed by the second sentence is in-
cluded in the temporal profile of the eventuality expressed by the first sentence. In
order to establish this temporal overlap one could intuitively argue as follows:

(10) World knowledge contains no link to the effect that taking off one’s sweater
changes the temperature. Since it is hot at some time before now, the state
hot must either hold initially or must have been initiated at some time ¢. The
latter requires an event, which is however not given by the discourse. There-
fore hot holds initially. Similarly no terminating event is mentioned, so that
hot extends indefinitely, and it follows that the event described by the second
sentence must be positioned inside the temporal profile of hot.

The event calculus is meant to formalize this kind of argumentation. Note the fol-
lowing important feature of the above argument. Several steps use a non—-monotonic
inference scheme. For instance, the conclusion that the state hot holds initially is de-
rived from the observation that the discourse does not mention an initiating event. From
this observation we conclude that there is no initiating event, leaving only the possi-
bility that sot holds initially. A second feature of this reasoning involves the principle
of inertia. This principle, which is axiomatized by the axioms of the event calculus,
states that if a state — hot in our example — is not forced to change under the impact of
an event, it is assumed to remain unchanged.

This specific kind of non—monotonicity is intimately linked to the event calculus
as a planning formalism. Planning is defined as setting a goal and devising a sequence
of actions that will achieve that goal, taking into account events in the world, and
properties of the world and the agents. Now given a goal G and circumstances C under
which G can be achieved, it does not follow in a strict sense that G can be achieved
under C plus some additional circumstances D. In this sense a planning system requires
a non-monotonic formalism.

A close connection between planning and linguistic processing is established by
assuming that a sentence S is considered as a goal (make S true) to be achieved by
updating the discourse model. This means that we can model the understanding of a
sentence in discourse as such a goal. The goal is to make a sentence — as part of a

discourse — true by accommodating those facts necessary for establishing the truth of
the sentence. This is one of the leading ideas of DRT. In example the first sentence
provides a discourse model which is updated to make the second sentence true unless
it is forced to give up essential parts due to explicit information incompatible with it.

We will now proceed to describe the event calculus a bit more formally. We start
with the language of the event calculus.

3.2 The language of the event calculus

Formally, the event calculus is a many-sorted first order logic. The sorts include event
types, fluents (time-dependent properties, such as activities), real numbers, and indi-
viduals. We also allow terms for fluent-valued and event type-valued functions.

The event calculus was devised to model formally two notions of change, instanta-
neous change — such as two balls colliding — and continuous change — for instance the
acceleration of a body in a gravitational field. A first series of primitive predicates is
used for modelling instantaneous change.

(11) Initially(f)

(12) Happens(e,t)
(13) Initiates(e, f,t)
(14) Terminates(e, f,t)

The intended meaning of these predicates is more or less self-explanatory. The
predicate Initially(f) takes as its argument a fluent and says that f holds at the begin-
ning of a scenario. Happens(e,t) holds if event type e happens at time point or interval
t. The event calculus allows to interpret ¢ as a point or as an interval. Initiates(e, f,t)
says that event type e causes f to be true strictly after ¢; i.e. f does not hold at 7. Finally,
Terminates(e, f,t) expresses that f holds at # and that e causes f not to hold after ¢.

The next two predicates are used to formalize continuous change.

(15) TrajeCtory(flat7f27d)
(16) Releases(e, f,1)

The 4—place predicate Trajectory(fi,t, f2,d) measures the change of f, under the
force fi in the interval from ¢ to ¢ 4 d. Linguistically, it is very close to the notion of
incremental theme (see for instance Kritka 1989, Dowty 1991). One may think of f as
an activity which acts on f,. Dowty uses mowing a lawn in order to explicate the notion
incremental theme. In Dowty’s example fi is the mowing activity and f, the changing
state of the lawn under this activity. The fluent f; should therefore be considered a
parameterized partial object; in Dowty’s example the state of the lawn after d time
steps of the ongoing activity of mowing. The axioms of the event calculus then provide
the homomorphism between the ongoing activity and the resulting (partial) state — the
partially mowed lawn — as required by Dowty.

The Releases(e, f,t) predicate is necessary for reconciling the two notions of
change formalized by the event calculus. Without this predicate the axioms would
immediately produce an inconsistency. Intuitively, the Releases predicate says that af-
ter event e happened, f is no longer subject to the principle of inertia. This allows
f to change continuously. Consider a scenario of filling a bucket with water. Event
type tap—on releases the parametrized fluent height(x) that measures the continously
changing level of the water in the bucket from the principle of inertia.

The Clipped—predicate of the calculus expresses that an event either terminating
fluent f or releasing this fluent from the principle of inertia occurred between times #;
and t,.

(17) Clipped(11, f,12)
The last predicate states that fluent f is true at time ¢.
(18) HoldsAt(f,1)

‘HoldsAt" should be considered a truth predicate although the axioms of the event
calculus do not contain the characteristic truth axiom, i.e.

HoldsAt(§,t) < 0(1)

where ¢ is a name for formula ¢. More formal machinery is necessary to transform
HoldsAt into a truth predicate satisfying the characteristic truth axiom. We will resume
the discussion of this topic in section [3.3]

In the next section we will introduce the axioms of the event calculus in an informal
way and motivate their use by way of the above reasoning example [(10)

3.3 Axiomatization

In this section we will show how the axioms of the event calculus constrain the mean-
ings of the basic predicates and how they formalize the principle of inertia. Moreover
we will illustrate how the concept of the completion of a program helps to implement
the intutive idea that events that are not required to happen by a narrative are assumed
not to occur. We will demonstrate that this strategy forces the reasoning to be non—
monotonic. Let us start with an informal example.

(19) If a fluent f holds initially or has been initiated by some event occurring at
time ¢ and no event terminating f has occurred between ¢ and ¢’ > ¢, then f
holds at ¢, (here > indicates the temporal precedence relation).

It is clear that this axiom embodies a law of inertia since if no f-related event oc-
curs then f will be true indefinitely. In the reasoning of example this axiom was
used for instance when we concluded from the fact that no terminating event for hot
is mentioned that this state holds indefinitely with regard to the story told so far. But

this was not the only reasoning principle we applied. From the fact that no terminating
event was mentioned in the short discourse we concluded that none occurred. The ax-
ioms of the calculus per se do not allow such a conclusion. We want a strengthening
of the assumptions in which only those events occur which are explicitly mentioned in
the discourse. In this sense understanding discourses is closely linked to closed world
reasoning There are many techniques for formalizing this kind of reasoning; one
is circumscription (for a good overview see Lifschitz 1994). In this paper, however,
we use the notion of the completion of a logic program. The advantage of logic pro-
gramming is that these techniques allow us to compute discourse models via fix point
constructions.

Let us be slightly more formal. The informal principle [(19)]is given by the combi-
nation of the following two axioms:

1. Initially(f) — HoldsAt(f,0)

2. Happens(e,t) Alnitiates(e, f,t) A t <t A—Clipped(t, f,i) — HoldsAt(f,')

The most important feature to notice here is that the head — the part to the right
of the implication sign — consists of a simple atom, and the body — the part to the left
of the implication sign — consists of a combination of formulas from two languages.
The first language is the language of the event calculus and the second language is
the first order language of the reals, i.e. of the structure (R,0, 1,4, -, <). This means
that the axioms are clauses of a constraint logic program. The formulas of the second
language, such as t < ', are the constraints of the constraint logic program. They are
used to compute the time profile of the predicates of the event calculus. All variables
in the clauses of logic programs are supposed to be universally quantified.

The completion of a program is a strengthening of it which explicitly expresses that
the predicates occurring in the program have extensions that are as small as possible.
Before we apply the method of completion to the examples on which we focus in
this paper, we indicate how it works at the hand of a very simple program taken from
Nienhuys-Cheng & de Wolf (1997).

(20) a. Prof{confucius) (Confucius is a professor.)
b. Prof{(socrates) (Socrates is a professor.) ,~Prof(y) — Student(y) (Every
person who is not a professor is a student.)

The program involves two predicates, professor and student. The programming
formalism is set up in such a way that it is only possible to make positive statements
about the extensions of predicates. Thus states about the predicate professor that
confucius belongs to its extension and also that socrates belongs to its extension
(20b) and these are all the definite claims the program makes about the extension of

3A typical example of this kind of closed world reasoning is provided by (train) schedules. If the
schedule mentiones the departure of a train from Stuttgart to Tbingen at 10.15 and the next at 11.01 one
assumes that there will be no train leaving Stuttgart between 10.15 and 11.01.

9

this predicate. The completion of the program ought to make this intuition concrete by
stating explicitly that the extension of professor consists just of these two individuals.
We accomplish this by forming the disjunction of the formulas x = con fucius and
X = socrates, where x is a new variable, which intuitively plays the role of an arbitrary
member of the extension of professor, and making this disjunction into the antecedent
of the following implication:

(21) x = confucius\ x = socrates — Prof(x)

In the next step we universally quantify over the variable x and strengthen the implica-
tion to a bi—-implication. The result is:

Vx(x = confucius\ x = socrates < Prof(x))

This formula now says that the set of professors just consists of Confucius and
Socrates. Under the assumption that Confucius and Socrates are the only individuals
in the model we get that the set of students is empty. But assume now that the language
in which the program is formulated contains an additional individual constant plato
which is interpreted as an element of the universe of discourse. Assume further that
socrates # confucius # platoﬂ Then implies that plato is not a professor. Now
consider the third clause of program [(20)] A similar procedure applied to this clause
yields:

(22) Vx(Student(x) < —Prof(x))E]

Formula [(22)] implies that Plato is a student. The conjunction of [(2T)] and [(22)| is
the completion of program [(20)] This completion implies that Confucius and Socrates
are the only professors and that Plato is a student. The program itself does not support
such strong conclusions. A similar observation applies to certain extensions of
that bring additional entities into play. Suppose for instance that we add to [(20)|the fact
beard(plato), which states that Plato has a beard. A minimal model for the completion
of the extended program will have the universe {confucius,socrates,plato}. In this
model Plato is not a professor, but the only student and the only one with a beard.

Let us now give a simple example with events. Consider a description of a situation
where the light is switched on at 1 in the night and switched off at 7 in the morning
and given by the following program:

(23) a. Happens(switch-on, 1)

“This is an instance of the ‘uniqueness of names’ assumption.
SThis is technically not quite correct. The formula produced by the official algorithm for computing
the completion of a program is:

Vx(Student (x) < Jy(x =y A=Prof(y)))

But for the simple example discussed above this difference does not matter. The official formula and
[22)|are equivalent.

10

b. Happens(switch-off ,7)

The uncompleted program does not yet imply that the light wasn’t switched off at 2
in the night and switched on at 3 in the night and so on. However, these events should
not occur in the minimal model of program The completion of the program is
given by

Ve(Happens(e,t) < (e = switch-on \t = 1)V (e = switch-off N\t =T))
This formula means the same as:
Ve(Happens(e,t) < (Happens(switch-on, 1)\ (Happens(switch-off , 7))

Any intervening events are thereby excluded.

This illustrates how the concept of the completion of a program helps to imple-
ment the intuitive idea that events that are not required to happen by a narrative
are assumed not to occur. Note that this strategy forces the reasoning to be non—
monotonic. We could easily enrich program with clauses Happens(switch-off, 2)
and Happens(switch-on, 3). From the modified program the conclusion that there are
no events happening between Happens(switch-on, 1) and Happens(switch-off, 7) is
now no longer derivable.

To sum up: Understanding a sentence in a discourse is like computing a minimal
model of the discourse in which the sentence is true. This computation is based on
the completion of a constraint logic program for the discourse under discussion. In the
next section we will see, however, that this aim cannot be achieved by the technical
means introduced so far.

3.4 Integrity Constraints

As pointed out above, the variables in the clauses of logic programs are universally
quantified. Therefore logic programs are restricted to provide universal information
only. This is clearly not sufficient for our purpose. For example, tense requires exis-
tential information (see the example below) and DRSs in general introduce existential
information. We will use here a device from database theory — integrity constraints —
to obtain the required additional information. In database theory integrity constraints
are means to ensure that a database stays consistent under updates. In this paper we
will use integrity constraints in a slightly different way; we employ them as means to
update a discourse model. Let us explain this idea with a simple example, involving an
English sentence in the perfect.

(24) I have caught the flu.

This sentence says that I have the flu now and world knowledge tells us that there was
an infection event in the past. Let flu be the fluent corresponding to having the flu

11

and let e be the infection event. Our knowledge is thus formalized by the following
program clause.

Initiates(e, flu,t)

As already said we view a sentence S as a goal (make S true) to be achieved by
updating the discourse model. In general it is not possible, however, to simply add this
information to the discourse model without further ado. There are two reasons for this.
First, we would like the updated discourse model to include explicitly all the events
that must have occurred in order for the total information represented by it to be true.
And, second, when the spelling out of what that comes to reveals a conflict, it should
mean that the new sentence cannot make a coherent contribution to the discourse as
the initial model represents it. It is therefore important that we do not just add the
condition that I have the flu now, but also the event that must have led to this state of
affairs. The formalisation of the event calculus given earlier offers a systematic way of
doing this. In the present instance what needs to be inferred from HoldsAt(flu,now)
is that there was an earlier event e initiating flu, something that is expressed in the
present formalism by the clauses Initiates(e, flu, ,t), Happens(e,t) and t < now.

We will now show how this reasoning applies to example [(24)] For this purpose,
assume that a discourse model is given as a collection of facts concerning events and
fluents and assume that sentence is formalized as HoldsAt(flu,now). We do not
take this formula as a program clause but as an instruction to construct a minimal adap-
tation of the discourse model in which HoldsAt(flu,now) is true. In order to detect
the events that must have occurred for HoldsAt(flu, now) to be true, we apply abductive
reasoning using the basic program constituted by the axioms of our formulation of the
event calculus, as well as, possibly, additional axioms that capture aspects of world
knowledge. To this end, we use HoldsAt(flu,now) as the trigger that sets this reason-
ing process in motion. Informally, the reasoning is as follows. We know that fluent
flu is initiated by some event e. No terminating event has been mentioned. Therefore
we conclude by closed world reasoning that no such event occurred. Consider again

axiom repeated here as

(25) If a fluent holds initially or has been initiated by some event occurring at time
t and no event terminating f has occurred between ¢ and ¢’ > ¢, then f holds at
t.

According to this axiom there is only one fact missing to establish the truth of
HoldsAt(f,now). We have to add Happens(e,t),t < now and its logical consequences
to the discourse model. This is sufficient to guarantee the truth of HoldsAt(flu, now)ﬁ

Let us now be a little bit more formal and see how this update is steered by the proof
system of logic programming, which is called resolution. Resolution can be regarded

There is a subtle difference between and sentence

@) I have the flu.

12

as a species of abductive reasoning in which a premise is matched with the heads of
all clauses with which it can be matched and the abductive inference is then drawn
that the matching instantiation of at least one of the bodies of those clauses must hold.
Note the obvious connection between this type of inference and the concept of program
completion. We start with the query ?HoldsAt(flu,now). Applying the axiom in[(26)]
the query reduces to the new query

nitiates(e, flu,t)

~Clipped(t, flu,t)
Happens(e,t),t < now
(26) Happens(e,t) A Initiates(e, f,t) N\ t < / A —Clipped(t, f, t/) — HoldsAt(f, t/)

The first clause can be resolved, since Initiates(e, flu,t) is given. For the second
query we have to use a form of resolution for negated queries. This means that we set
up a new derivation with the positive query

? Clipped(t,flu,t/).

Since we have no matching clauses this query fails and therefore the negated query
succeeds (This is the proof—theoretic version of negation as failure.). We are left with
the last query

?Happens(e,t),t < now.

Since we do not have a matching clause for this query ?HoldsAt(flu,now), interpreted
as query, would fail (finitely). However, HoldsAt(flu,now) interpreted as an integrity
constraint leads to an update of the discourse model with the missing clause. In this
updated model HoldsAt(flu, now) is clearly satisfied. This integrity constraint is written
as

?HoldsAt(flu,now), succeeds

A more general description of this procedure is as follows: Given a program P
containing the clauses below and an integrity constraint ¢ we want to conclude that ¢
can only be the case because one of the ¢;’s is the case.

Given general world knowledge, these two statments can be said to convey the same information: Any-
one who has the flu must have caught it at some earlier time. But in[(24)|the occurrence of such an event
e is an inalienable part of the content, whereas[(D)]entails it only in conjunction with the relevant piece of
world knowledge. When our CLP version of the event calculus is combined with DRT, this difference
manifests itself in that the DRS constructed from will contain the flu—catching event already. So if
the integrity constraints contributed by are derived from the DRS, the abductive reasoning we are
discussing is not needed. More precisely, it will lead to constraints that are already in the given con-
straint set. This is different for ()} The DRS for[()] only contains a representation of the current state of
the speaker. So in this case the abductive process reveals a constraint that is not present yet, and which
therefore has to be added to the discourse context with the condition HoldsAz(flu,now).

13

01 —q
02— q

O — g
This is a strengthened form of closed world reasoning.

A second type of integrity constraint occurs when the top query must fail. This is
important for sentences about the past.

27 Max arrived.

This sentence tells us that Max’s arrival was situated entirely in the past, and thus is
not going on any more at the present. The positive query

?Happens(e,t),t < now

expresses just the first part. The second part can only be expressed by the negative
constraint, which can be represented as

?Happens(e,now), fails

Since the resolution process also accepts queries beginning with a negation we can
reduce this negative query to the positive query

—Happens(e,now)

Since both positive and negative constraints are admitted and the latter are identified
by the term fails, it is natural to introduce a similar term to flag the positive queries.
We use succeeds. So the constraints contributed by can be given as

?Happens(e,t),t < now, ~Happens(e,now) succeeds

We will say that an integrity constraint IC is satisfiable if it can be made to succeed in
case it is positive, and can be made to fail in case it is negative.

3.5 Reification

DRSs will in general contain not only (discourse referents for) events, but also for
states. The version of CLP we have presented so far differs in that it has variables for
events but not for states. This gap can be filled by expanding our version of CLP with a
reification component. This component makes it possible to associate a ‘res’ with each
condition. In particular, it will enable us to associate with each condition of the form
HoldsAt(f,t) an entity that can be regarded as the state of the fluent f obtainingm The
reification procedure is based on a method due to S. Feferman.

We will explain briefly how this works. For this purpose we will enrich the event
calculus with a specialization of the theory of truth and abstraction in Feferman

(1984)F|

TReification can be put to many other uses as well, but this is the one for which we need it here.
8For the most recent version of this theory see Feferman (2008).

14

Consider the predicate burn(x,y,t) where ¢ is a parameter for time. Feferman’s sys-
tem allows to form terms from this predicate in two different ways. The first possiblity
is to existentially bind ¢ and construct the term 3¢.burn|x,y,t]. The square brackets
are used here as a notational device to indicate that 3¢.burn|x,y,t] is a term and not a
predicate any more. The second possibility is to abstract over the temporal parameter
and form the term burn|x,y,f]. Informally burn|x,y,f] should be understood as the set
of times at which burn(x,y,t) is true. But note that burn|x,y,] is a term and therefore
denotes an object. Feferman’s system thus provides two different kinds of structured
abstract objects. Intuitively we want to think of 3¢.burn|x,y,t] as the event type corre-
sponding to x’s burning of y and of burn|x,y,] as the fluent or state corresponding to
x’s burning yﬂ However nothing in the formal set up so far tells us that 3¢.burn|x,y, |
is an event type and burn[x,y,f] is a fluent. In order to make sure that burn|x,y,f] be-
haves as a fluent HoldsAt has to be turned into a real truth predicate. The following
theorem from Feferman (1984) provides the necessary technical result.

Theorem 1 Any system that is consistent — in the sense that it has a model — can
be extended to a system with truth axioms.@ The extension is conservative over the
original system.

For the special theory under discussion here we need just one truth axiom, which
reads as follows:

HoldsAt(0[t],s) < ¢(s)

The specialization for burn|x,y,] therefore is:

HoldsAt(burn|x,y,f],s) < burn(x,y,s)

This shows that burn|x,y,| behaves like a fluent. Moreover, 3t.burn|x,y,t| can-
not be substituted as an argument of the HoldsAt—predicate, but it can be substituted
as an argument of the Happens—predicate. Hence, with regard to the axioms of the
event calculus, abstract terms like 3¢.burn|x, y, t] function as event types and terms like
burn|x,y,f] as fluents.

To see what this process of reification adds to the representations developed so far,
consider again sentence [(24)] here repeated as [(28)]

(28) I have caught the flu.

The structure of this sentence was represented by the simple fluent flu in the deriva-
tion of Section [3.4] For the purposes of this section this representation was sufficient.
However, we would like to have access to the internal structure of sentence [(28)] as

9For an analysis of these different types of English gerunds see van Lambalgen & Hamm (2005),
chapter 12.
10A model for the event calculus was constructed in (van Lambalgen & Hamm 2005).

15

well. For simplicity, we will assume that the personal pronoun [is represented by the
individual constant i. Under this assumption, sentence can be formalized as the
structured fluent flu[i,7]. This representation allows us to have access to the subject of
the sentence. We will see in a moment that the possibility to structure fluent and event
type objects is an indispensible prerequisite for the transformation of DRSs to integrity
constraints.

3.6 Event Calculus and DRS

In this section we will outline the connection between DRT and EC with the simplest
example from Hamm, Kamp & van Lambalgen (2006). Consider again sentence

29) Max arrived.

The DRS for this sentence is given in |(30)

mte

eCt

e: arrive(m)

Since DRSs introduce existential presuppositions which have to be accommodated,
integrity constraints are the appropriate means to represent their inferential potential.
First we assume that the constant m and the predicate arrive(x,t) are given. This pred-
icate will be used in its reified form. We use the first possibility for reification and
derive the event type Js.arrive|x, s|.

It has often been observed that the simple past uttered out of the blue is infelicitous.
This tense requires that the context provides additional information something like a
‘reference time’. We will represent the context here with a new fluent constant f and
the clause HoldsAt(f,t). This constant can then be unified with further contextually
given information.

The discourse referent e corresponds to Js.arrive|x,s| and the condition e: ar-
rive(m) to the clause Happens(3s.arrivem,s],t); n is set to now and ¢ correspond to
the context fluent f. In this way, the DRS for sentence is turned into integrity

constraint

(31) ?HoldsAt(f,t),t), Happens(3s.arrive|m,s|,t), t < now,
—Happens(3s.arrive[m,s|,now), succeeds

Since in the rest of this paper we will not be concerned with tense, we will simplify
integrity constraints as much as possible. First we will drop the clause for the context
fluent and the negative integrity constraint. Moreover, we will skip over the internal
structure of fluent and events whenever this does not lead to confusion. For instance
we will simply write e for Is.arrive[m, s|. Given these assumptions integrity constraint

16

[(3T)|now reads:

(32) t),Happens(e,t), t < now, succeeds

This is certainly not completely adequate, but the topics to be discussed in the rest
of this paper will not be affected by this simplification.

3.7 Scenarios and Hierarchical Planning

In this section we will start our discussion of more complex examples. The first one
is the verb absperren and the derived ung-nominal Absperrung respectively the NP
die Absperrung des Rathauses. Let us start with the accomplishment verb absprerren.
According to van Lambalgen & Hamm (2005), every Aktionsart determines a specific
‘scenario’. A scenario should be considered as a local program in contrast to the global
program given by the axioms of the event calculus. These local programs provide the
additonal information for the Aktionsarten in question, in this case the information
specific to accomplishments. In order to formulate this local program we need the
following terms in the language of the event calculus.

e construct is an activity fluent.

e barrier(x) is a parameterized fluent indicating the construction state x of the
barrier.

e m areal constant indicating the construction stage at which the barrier is consid-
ered finished. Thus barrier(m) may be considered the completed object.

e 0 is a real constant indicating the state at which the construction of the barrier
starts.

e start is an event initiating constructing.

e finish is the event terminating the constructing activity when the barrier is fin-
ished.

e a fluent accessible(r) represententing the state in which the town hall is accessi-
ble, where r is a constant denoting the town hall.

e g is a function relating the constructing activity to the construction stage of the
barrier. To keep things simple we assume that g is monotone increasing.

These terms allow us to write the following set of clauses as one possible scenario
for the accomplishment verb absperren.

(33) a. Initially(barrier(0))

17

b. Initially(accessible(r)) s HoldsAt(barrier(m),t) A
HoldsAt(construct,t) —

Happens(finish,t)

Initiates(start, construct,t)

Initiates(finish, barrier(m),t)

Terminates(finish, accessible(r),t)

Terminates(finish, construct,t)

HoldsAt(barrier(x),t) —

Trajectory(construct,t,barrier(x+g(d)),d)

h. Releases(start,barrier(0),t)

e oo

The scenarios for the Aktionsarten are not determined uniquely, but every scenario
is required to include information specific to the Aktionsart of the verb under consid-
eration. For the example above, this means that every scenario has to include clauses
about the starting and finishing events, about the activity constructing, the state acces-
sible(r), and clauses relating this activity to the state of the partial object barrier(x).
Together with the axioms of the event calculus these clauses determine inferences trig-
gered by the Aktionsart of absperren and the lexical content of this verb.

We are primarily interested in the noun phrase Absperrung des Rathauses. We will
first concentrate on the event reading; the result state reading will be discussed later.

The first step consists in establishing an event type corresponding to the event
reading of Absperrung des Rathauses. Using Feferman coding we can transform the
predicate absperren(x,r,t) into the abstract event type a = 3t.absperr|x,r,t]. Here r
is an individual constant representing the town hall. This is a possible denotation for
Absperrung des Rathauses, but so far this event type is not related to the verb from
which Absperrung is derived.

In order to link the nominal to the semantics of the base verb given by its scenario,
we introduce an event definition by hierarchical planning. The intuitive idea is that
hierarchical planning allows to abstract from certain details of the verb’s eventuality
while maintaining the most important features of the verb’s time profile. Formally
hierarchical planning is given by program clauses defining an event occurring in the
head atom of a clause. We will use the following definition.

Definition 1 Suppose a scenario for the fluent f is given. In the context of
this scenario, the event e is interpreted using f by hierarchical planning if
Happens(startg,s) N\ s <r A HoldsAt(f,r) — Happens(e,r)

In the special case considered here Definition [I] gives:

Happens(startconsiruct,S) N s < r N HoldsAt(construct,r)
— Happens(3t.absperr|x,rt],r)

We will simply write a for the event type 3r.absperr|x,r,t] defined in this way. We
thus have a denotation for the event reading of the NP die Absperrung des Rathauses.

18

Next, we have to consider the verbal contexts of this NP. The first verb is behindern in

(€E))

34) Die Absperrung des Rathauses wurde behindert.
The cordoning-off of-the town hall was hampered.

Let us assume that an event type valued function behindern is given. Then we
arrive at the following integrity constraint:@

(35) ?—Happens(a,t),Happens(behindern(a),t),t < now succeeds

This is certainly too simple. An event type like behindern requires its own scenario. We
think that for behindern to be applied successfully, the activity of cordoning-off must
have been initiated and behindern supplies the additional information that this activity
does not proceed in a smooth way. However, we think that although the activity of
cordoning-off is hampered in more or less serious ways, nevertheless the goal — the
sealing off of the town hall — will eventually be achieved (non-monotonically).

This changes when one considers our next verb, verhindern. In the result state
— the town hall being sealed off — is clearly not achieved.

(36) Die Absperrung des Rathauses wurde verhindert.
‘The cordoning-off of-the town hall was prevented.’

This is adequately represented by integrity constraint Since according to
finish is not allowed to happen, we cannot derive HoldsAt(barrier(m),s) and
—HoldsAt(accessible(r),s) for some time s.

(37)
? — Happens(a,t), Happens(finish,t),t < now, fails

4 Anaphora resolution

4.1 Reconstructing anaphoric relations

In this section, we will show why anaphora resolution is possible in[(38a)|and explain
why is it blocked in in a slightly more formal way.

(38) a. Die Absperrung des Rathauses wurde vorgestern von Demonstranten be-
hindert. Wegen anhaltender Unruhen wird sie auch heute aufrecht erhal-
ten.

‘The cordoning-off of the town hall was disturbed by protesters the day
before yesterday. Due to continuing unrest, it is maintained today as
well.

"This is a simplification: The scenario for behindern plus hierarchical planning triggered by past
tense introduces an event type e which has to be unified with a.

19

b. Die Absperrung des Rathauses wurde vorgestern von Demonstranten
verhindert. *Wegen anhaltender Unruhen wird sie auch heute aufrecht
erhalten.

‘The cordoning-off of the town hall was prevented by protesters the day
before yesterday. Due to continuing unrest, it is maintained today as
well.

Clearly, in [(38a)] the pronoun sie in the second sentence refers to the target state of
being cordoned off introduced by the first sentence. The impossibility of such an in-
terpretation — this is what “*”” is meant to signal — suggests that due to the meaning of
the verb verhindern, such a target state is not available in |(38b)

We will simplify the formalisation as far as possible, concentrating only on what
is essential for anaphora resolution. The first sentence of [(38a)| is represented by
integrity constraint|[(35)] i.e. by

? — Happens(a,t), Happens(behindern(a),t),t < now succeeds

The important part of the second sentence is the one containing the verb aufrecht
erhalten (sustain) and the pronoun sie. Choosing a fluent variable s — s is mnemonic
for state — and a fluent valued function au frecht — erhalten we formalise this part as:

? — HoldsAt(aufrecht-erhalten(s),s),s < now, succeeds

The whole little discourse in |(38)[is thus represented by the integrity constraint in

(39) ?—Happens(a,t),Happens(behindern(a),t),
HoldsAt(aufrecht-erhalten(s),t),t < now, succeeds

Since aufrecht-erhalten requires a state — a special type of fluent — as an argument, s
cannot be unified with event type a. This is the formal version of the already explained
type mismatch. Therefore it seems that anaphora resolution is blocked in this case.
We will now show that it is nevertheless possible to reconstruct an anaphoric
relation by using information contained in the scenario for the verb absperren.
Since aufrecht-erhalten selects the (result) state reading of the NP die Absperrung
der Botschaft we first have to introduce a denotation for this NP representing this
reading. Note that we assume that behindern allows — perhaps later as planned
— finish to happen (non-monotonically). From this we can derive via resolution
—HoldsAt(accessible(r),w) for some time w. Using Ferferman coding we can reify
this formula and obtain the fluent object —HoldsAt|accessible(r),w]. We take this
object as denotation of the (result) state reading of the NP die Absperrung des
RathausesF_fl Now we can compute the anaphoric relation between the pronoun sie
and its antecedent die Absperrung des Rathauses by unifying s — representing sie —

12This is justified in Hamm & Kamp (2009)

20

with —HoldsAt[accessible(r),w|. Writing inaccessible for ~HoldsAt[accessible(r), W]
we arrive at the following representation for discourse

(40) ?—Happens(a,t),Happens(behindern(a),t),
HoldsAt(aufrecht-erhalten(inaccessible),t),t < now, succeeds

Summing up, we reconstructed the anaphoric relationship between the pronoun sie and
and the antecedent NP die Absperrung des Rathauses in three steps. First, we derived
the formula —~HoldsAt(accessible(r),w) by resolution using information of the sce-
nario of the verbs absperren and behindern. Second, we transformed this formula into
the term —HoldsAt[accessible(r),w] = inaccessible and third, we unified s with this
term. In the minimal model this is the only possibility because there are no other result
states, but in richer models there may very well be more than just one result state. In
this case, s could be freely unified with these other states, but this would result in a
deictic reading for the second sentence of example [(38a)|

Consider now the mini-discourse in[(38b)] Combinig integrity constraint with
the representation of the second sentence of example we get integrity constraint

[(@1) for [(38b)}

(41) ?—Happens(a,t),Happens(finish,t),t < now, fails,
HoldsAt(aufrecht-erhalten(s),t),t < now, succeeds

Since this integrity constraint forbids finish to happen for any time ¢ we are no longer
in a position to derive ~HoldsAt(accessible(r),t). But then we cannot unify s with the
reified version of “HoldsAt(accessible(r),t) and thus the resolution of the pronoun
sie with the NP die Absperrung des Rathauses is correctly blocked.

Note that the possibility to reconstruct the anaphoric relation in depended on
the fact that —HoldsAt(accessible(r),t) contains a temporal parameter. This is crucial
for our next example involving the object reading of die Absperrung des Rathauses —
here repeated as [(42)]

42) *Die Absperrung wurde heute verstdrkt. Sie war am Vortag massiv behindert
worden.
‘The barrier was fortified today. It [the cordoning-off] had been massively
hampered the day before.’

In example [(42)] the pronoun sie cannot refer back to Absperrung. As mentioned
above, this is somewhat surprising for a “lazy” approach. We need only briefly in-
dicate, how we can account for the inacceptability of the sequence in |(42)

To fortify a barrier presupposes that a barrier already existed. Let us represent
this state of the material object which is established by the cordoning-off activity by
the fluent barrier(m) which is contained in the scenario of the verb absprerren. This
fluent holds after the finish event happened. It corresponds to a completed barrier. The
denotation for the object reading of the noun Absperrung can now be given by

21

(43) Absperrung(barrier(m))

Note that this formula does not contain a temporal parameter. Therefore the three step
procedure for reconstructing anaphoric relations introduced above cannot be applied
in such cases. This explains why the pronoun sie in example cannot refer back to
the NP Die Absperrung.

4.2 Formal Discourse Semantics

In all classical theories of formal discourse semantics, it was assumed that certain log-
ical operators like negation, disjunction and universal quantification — in contrast to
existential quantification and conjunction — block anaphora resolutionPE] These oper-
ators were considered as static. For instance, in early DRT the accessibility relation
— a geometrical relation on the DRS level — caused discourse referents contained in
a negated DRS to be inaccessible. In DPL the semantics of negation as a test did not
allow scope extension of the existential quantifier as it did in non—negated sentences.
This accounted for the grammaticality distribution in

44) a. A man walked in the park. He whistled.
b. No man walked in the park. *He whistled.

However, there are cases for which this prediction is too strong:

45) It is not the case that John does not own a car. It is red and it is parked in front
of the house.

For this reason, Groenendijk & Stokhof (1990) introduce a dynamic negation which re-
stores the binding potential of the double negated sentence This kind of negation
was improved among other by Dekker (1993).

The following examples due to Rainer Bauerle (1988), however, show that the
presence or absence of negation is not the determining factor of anaphora resolution
alone. Rather, the interaction of negation with certain types of verbs is crucial. Con-
sider first the examples in [(46), which are coherent with the predictions of the early
formal discourse theories.

(46) a. Hans schrieb einen Brief. Das dauerte zwei Stunden.
Hans wrote a letter. It lasted two hours.
‘Hans wrote a letter. This took him two hours.’
b. Hans schrieb keinen Brief. *Das dauerte zwei Stunden
Hans wrote no letter. It lasted two hours.
‘Hans did not write a letter. This took him two hours.’

Introducing a variation in the second sentence, the following sequences are not in
accordance with formal discourse theories.

31n this section we will only consider negation.

22

“@n a. Hans schrieb einen Brief. Das iiberraschte uns alle.
Hans wrote a letter. It surprised us all.
‘Hans wrote a letter. We were all surprised by that.’
b. Hans schrieb keinen Brief. Das iiberraschte uns alle.
Hans wrote no letter. It surprised us all.
‘Hans did not write a letter. We were all surprised by that.’

We will now show that the proposed formalism allows us to account for this gram-
maticality distribution as well. Again, we will only give those formal details which are
essential for anaphora resolution. Let us first consider the examples in Let e be
the event type representing Hans writing a letter. The first sentence of is then
formalised as

?— Happens(e,t),t < now,succeeds

and the second as (with ¢’ as a variable representing the pronoun das).

?Happens(dauern(e'),t),t < now,t = 2 hours succeeds

Together they represent the discourse in [(46a)|

(48) ?—Happens(e,t),t < now,Happens(dauern(e'),t),
t =2 hours, succeeds

In the minimal model computed by integrity constraint [(48), ¢’ and e will be unified.
Thus, das refers to the event of Hans writing a letter. In non—-minimal models, ¢’ may
be unified with other event types. This will give the deictic reading again.

The integrity constraint for the first sentence of example is as in[(49);
(49) ?Happens(e,t),t < now, fails

The integrity constraint for the second sentence is the same as the one for In-
tegrity constraint computes a model in which there is no event type with the re-
quired property, i.e. of Hans writing a letter. Therefore das cannot be unified with such
an event type. This explains the grammaticality distribution in [(46)]

We will now consider the examples in First we have to determine the sort of
arguments iiberraschen requires. We will assume here that this verb takes only facts as
arguments. In case that iiberraschen turns out to be ambiguous between an event and
a fact reading a slightly more involved argument will explain the facts in too.

The first parts of the sentences in are of course formalised as above. The
second part gives rise to the following integrity constraint:

(50) ? — HoldsAt (surprise(f),t), t < now,succeeds

Here, we are facing a type mismatch again. The variable f cannot be unified with event
e provided by the first sentence since e and f belong to different sorts.

23

However, we can reify Happens(e,t) occurring in the integrity constraint for the
first sentence and thereby get: Happens|e,i]. Intuitively one can consider this term as
denoting the fact that event e occurred. Unifying f with this term results in:

(51) ?—HoldsAt(surprise(Happens(e,i)),t), t < now,succeeds

This means that the fact that Hans wrote a letter surprised us. Let us now consider
example|(47b)l The integrity constraint for the first sentence is:

?—Happens(e,t), t < now, fails

An integrity constraint fails if and only if its negation succeeds. Therefore, we get
the following equivalent constraint

?—-Happens(e,t) t < now,succeeds

Applying reification to the Happen—part of this constraint we derive the term
—Happens|e,i]. Since this is a term of the same sort as f, it is possible to unify f
with ~Happens|e,]. The result is:

?HoldsAt (surprise(—~Happens|e,i]),t), t < now,succeeds

The formula says that the fact that Hans didn’t write a letter surprised us. This
shows that we get the correct results in this case as well.

5 Conclusion and Outlook

In the paper, we argued that disambiguation may be non-monotonic. We discussed
examples of anaphora resolution involving a type conflict between anaphora and dis-
ambiguated antecedents. Since the anaphora picks up a reading which was discarded
for the antecedent, we apply a process of reambiguation to the antecedent to resolve
the type mismatch.

Future work needs to address the generality of such maps as the above, both with
regard to deverbal nominalisations (for which a mapping from e.g. states to events
seems rather awkward) and to other kinds of systematically ambiguous nouns. One
case at hand involves the dot objects discussed by Pustejovsky (1995):

(52) Jonathan Strout hat das Buch [content] geschrieben, es [manifestation] hat
539 Seiten und ist 2004 im Bertelsmann Verlag erschienen.
‘Jonathan Strout wrote the book, it has 539 pages and was published by Ber-
telsmann.’

24

References

Biuerle, R. (1988): Ereignisse und Reprisentationen. Tech. rep., LILOG-Report 43.
Dekker, P. (1993): Transsentential Meditations. PhD thesis, University of Amsterdam.

Dowty, D. (1991): ‘Thematic Proto—Roles and Argument Selection’, Language
67, 547-619.

Feferman, S. (1984): ‘Toward Useful Type-Free Theories I’, The Journal of Symbolic
Logic 49, 75-111.

Feferman, S. (2008): ‘Axioms for Determinateness and Truth’, The Review of Symbolic
Logic 1, 204-217.

Groenendijk, J. & M. Stokhof (1990): Dynamic Montague Grammar. /n: L. Kdlméin
& L. POlos, eds, Papers from the second Symposium on Logic and Language.
Budapest.

Hamm, F. & H. Kamp (2009): Ontology and Inference: The Case of German ung—
Nominals. Technical report, SFB 732, University of Stuttgart.

Hamm, F., H. Kamp & M. van Lambalgen (2006): ‘There is no opposition between
formal and cognitive semantics’, Theoretical Linguistics 32, 1-40.

Hardt, D. (2003): “Sloppy Identity, Binding, and Centering” in Young & Zhou (eds.):
Proceedings of SALT 13, Ithaca: CLC

Kowalski, R. A. & M. Sergot (1986): ‘A logic-based calculus of events’, New Genera-
tion Computing 4, 65-97.

Krifka, M. (1989): Nominalreferenz und Zeitkonstitution. Fink, Miinchen.

Lifschitz, V. (1994): Circumscription. In: D. Gabbay, C. Hogger & J. Robinson, eds,
Handbook of Logic in Artificial Intelligence and Logic Programming: Vol 3.
Clarendon Press, Oxford.

McCarthy, J. & P. Hayes (1969): Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: D. Michie & B. Meltzer, eds, Machine Intelligence 4.
Edinburgh University Press, Edinburgh.

Nienhuys-Cheng, S-H. & R. de Wolf (1997): Foundations of Inductive Logic Program-
ming. Springer, New York, Berlin.

Poesio, M. (1996): Semantic Ambiguity and Perceived Ambiguity, in v. Deemter &
Peters (eds.): Semantic Ambiguity and Underspecification, Stanford: CSLI, 159-
201

25

Pustejovsky, J. (1995): The Generative Lexicon. MIT Press, Cambridge, MA.

Reyle, U. (1993): Dealing with Ambiguities by Underspecification: Construction, Rep-
resentation and Deduction, Journal of Semantics 10 (2), 123-179

Shanahan, M. (1997): Solving the Frame Problem — A Mathematical Investigation of
the Common Sense Law of Inertia. MIT Press, Cambridge, MA.

van Lambalgen, M. & F. Hamm (2005): The Proper Treatment of Events. Blackwell,
Malden.

26

	Introduction
	Disambiguation and Underspecification
	Event Calculus
	Linguistic Motivation
	The language of the event calculus
	Axiomatization
	Integrity Constraints
	Reification
	Event Calculus and DRS
	Scenarios and Hierarchical Planning

	Anaphora resolution
	Reconstructing anaphoric relations
	Formal Discourse Semantics

	Conclusion and Outlook

