



Universität Stuttgart

# **Dialog-act classification using Convolutional Neural Networks**

**Daniel Ortega** 

# Agenda

- Background
- Models for Dialog-act classification
  - Lexical model
  - Acoustic model
  - Lexico-acoustic model
- Corpora
- Results
- Conclusion
- Future Work

- Dialog-act (DA):
  - Each **utterance** in a dialog has a **performative function** in communication.
  - > Dialog-act is an **act of communication** that expresses certain **attitude**:
    - ▶ statement  $\rightarrow$  belief, request  $\rightarrow$  desire, apology  $\rightarrow$  regret.
  - A dialog-act succeeds if the audience identifies the **speaker's intention**.

Kent Bach(2000)

- Dialog-act (DA):
  - Each utterance in a dialog has a performative function in communication.
  - > Dialog-act is an **act of communication** that expresses certain **attitude**:
    - ▶ statement  $\rightarrow$  belief, request  $\rightarrow$  desire, apology  $\rightarrow$  regret.
  - A dialog-act succeeds if the audience identifies the **speaker's intention**.

Kent Bach(2000)

| Speaker | Dialog Act  | Utterance                                                                                     |
|---------|-------------|-----------------------------------------------------------------------------------------------|
| А       | Wh-Question | What kind do you have now?                                                                    |
| В       | Statement   | Uh, we have a, a Mazda nine twenty nine and a Ford Crown Victoria and a little two seater CRX |
| А       | Acknowledge | Oh, okay.                                                                                     |

A fragment of a labeled switchboard conversation

#### How to approach the task?:

- Lexical approach
  - Traditional approach, it employs the utterance transcription (word sequence)
  - Kim (2014) proposed a sentence classification model: a simple but strong onelayer convolutional neural network using pre-trained word vectors.

#### How to approach the task?:

- Lexical approach
  - Traditional approach, it employs the utterance transcription (word sequence)
  - Kim (2014) proposed a sentence classification model: a simple but strong onelayer convolutional neural network using pre-trained word vectors.
- Acoustic approach
  - Shriberg et al. (2000) was one of the first works that explored the prosody as a potential knowledge source for dialog-act classification.
  - The DAs can be ambiguous if only lexical information is considered Example: *This is your car (?)*  $\rightarrow$  Statement or declarative questions
  - In dialog systems, automatic speech recognizers generate noisy transcriptions, the DA classifier must deal with them.

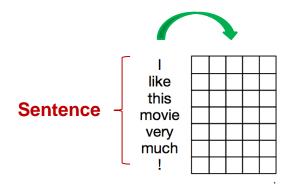
#### How to approach the task?:

- Lexical approach
  - Traditional approach, it employs the utterance transcription (word sequence)
  - Kim (2014) proposed a sentence classification model: a simple but strong onelayer convolutional neural network using pre-trained word vectors.
- Acoustic approach
  - Shriberg et al. (2000) was one of the first works that explored the prosody as a potential knowledge source for dialog-act classification.
  - The DAs can be ambiguous if only lexical information is considered Example: *This is your car (?)*  $\rightarrow$  Statement or declarative questions
  - In dialog systems, automatic speech recognizers generate noisy transcriptions, the DA classifier must deal with them.
- Lexico-acoustic approach

- Convolutional Neural Networks (CNN):
  - CNNs are several layers of convolutions with nonlinear activation functions.
  - Each layer applies different filters and combines their results to obtain highlevel features.
  - The last layer is then a classifier that uses these high-level features.
  - Grid-like input format

6

Convolutional Neural Networks (CNN):



Word Embeddings

Image source: Zhang. Y., Wallace, B. (2015)

### Convolutional Neural Networks (CNN):

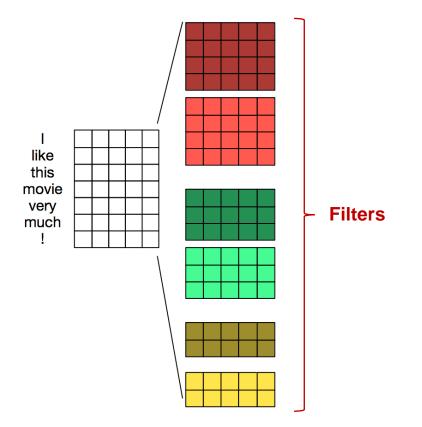
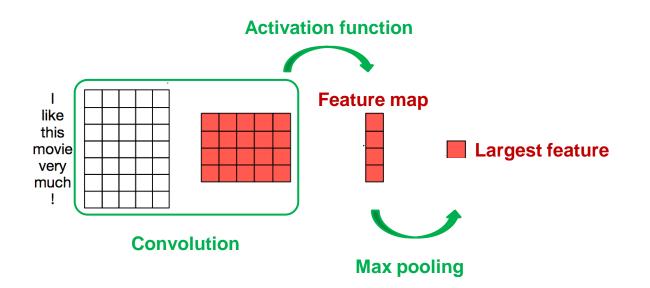


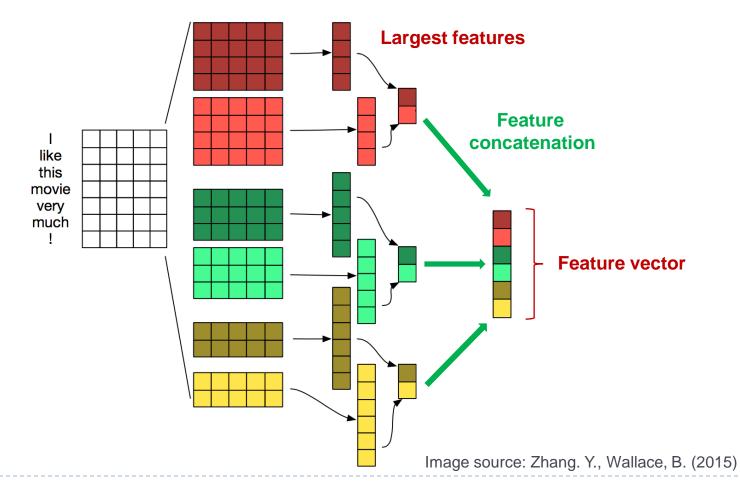
Image source: Zhang. Y., Wallace, B. (2015)

7

Convolutional Neural Networks (CNN):

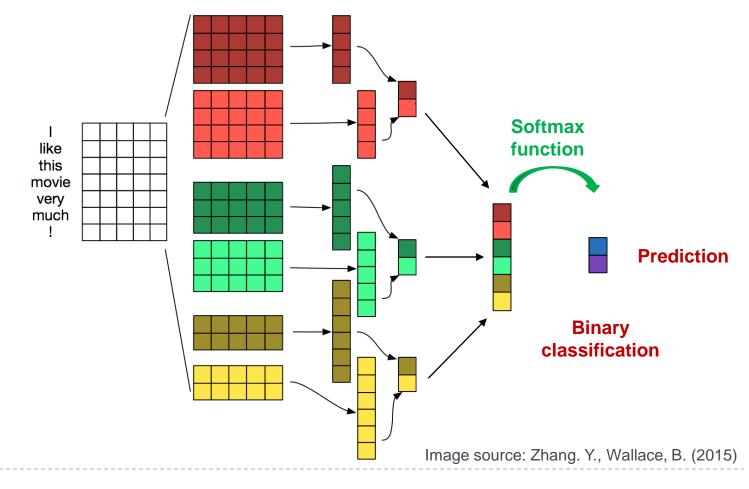


Convolutional Neural Networks (CNN):

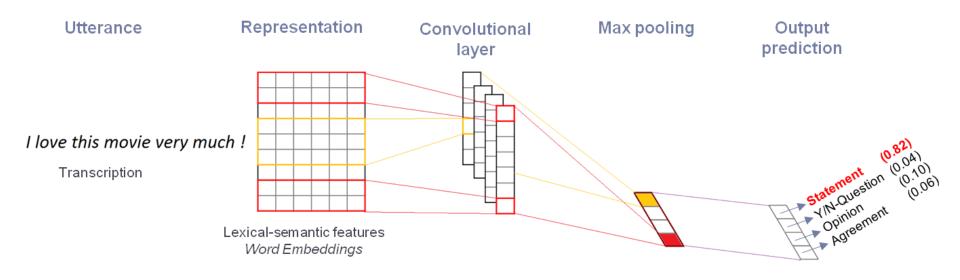


Filters Feature maps

### Convolutional Neural Networks (CNN):

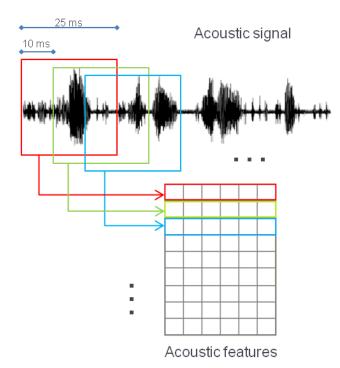


## Lexical Model



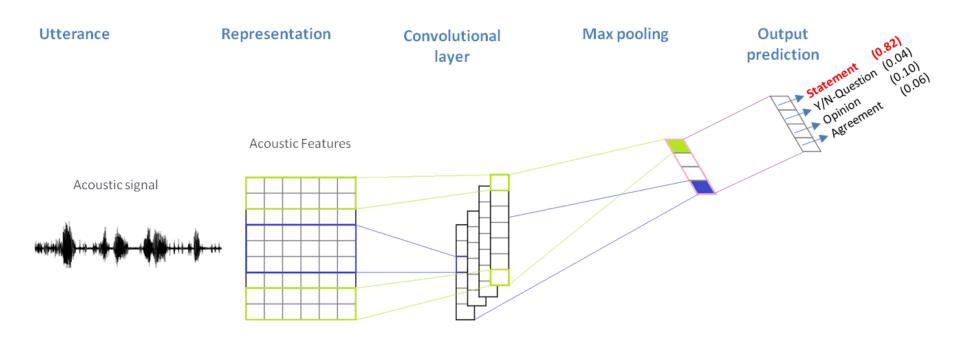
## Acoustic Model

#### Acoustic feature extraction



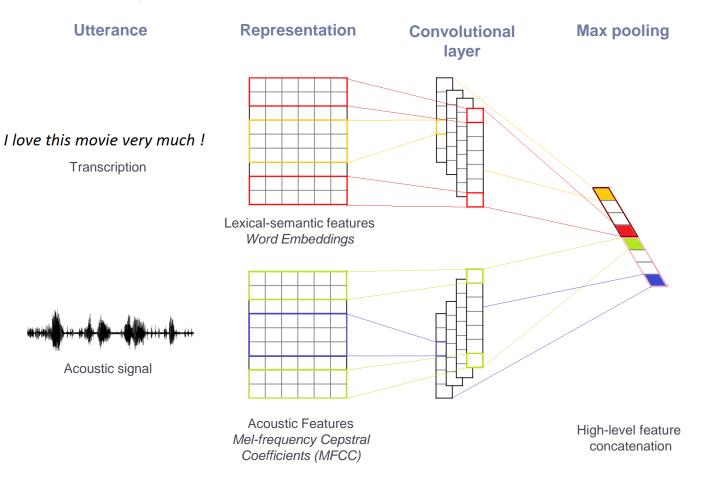
- openSMILE feature sets:
  - Prosodic features: F0, voicing probability and loudness contours
  - LogMel Spectrum
  - Mel-Frequency-Cepstral Coefficients (MFCC)

## Acoustic Model



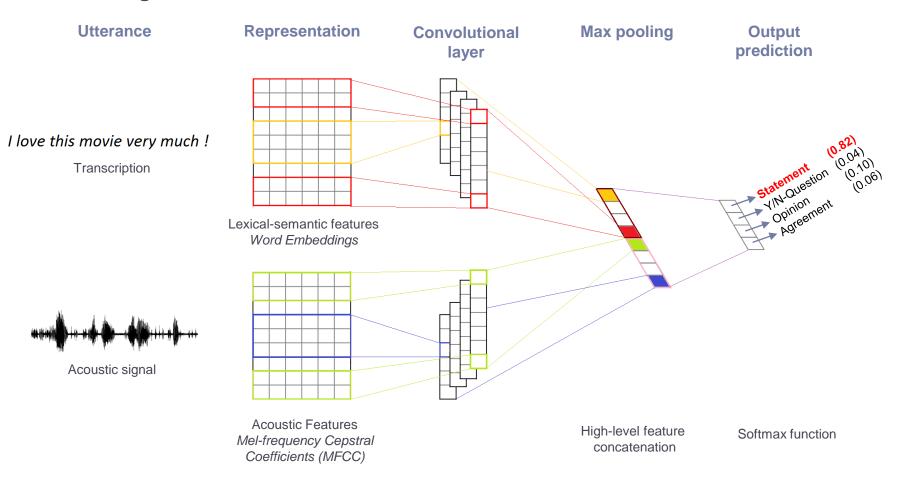
## Proposed Model

#### Dialog-act Classifier – Bi-Convolutional Neural Network



## Proposed Model

#### Dialog-act Classifier – Bi-Convolutional Neural Network



MGK

# Corpora

| Corpus      | Training            | Test          | Classes |  |
|-------------|---------------------|---------------|---------|--|
| ATIS        | $\sim 5,000$        | $\sim 900$    | 17      |  |
| Switchboard | $\sim \! 98,\! 000$ | $\sim 10,000$ | 42      |  |
| ICSI        | $\sim \! 99,000$    | $\sim 10,000$ | 5       |  |

### Results: Lexical Model

| Compus      | Classes | Time elapsed        | Accuracy (%) |  |
|-------------|---------|---------------------|--------------|--|
| Corpus      | Classes | per epoch on avg.   |              |  |
| ATIS        | 17      | $\sim 12 \text{ s}$ | 94.68        |  |
| Switchboard | 42      | $\sim$ 200 s        | 71.57        |  |
| ICSI        | 5       | $\sim 94s$          | 84.45        |  |

Table 6.2: Accuracy per corpus on lexical model

### Results: Acoustic Model per Feature Set

| Epochs | Accuracy (%)<br>per feature set |         |       |  |
|--------|---------------------------------|---------|-------|--|
|        | Prosodic                        | Log-Mel | MFCC  |  |
| 25     | 72.40                           | 73.19   | 74.88 |  |
| 50     | 72.51                           | 73.71   | 73.64 |  |
| 100    | 72.62                           | 74.09   | 75.67 |  |
| 200    | 72.74                           | 76.01   | 76.24 |  |

| Epochs | Accuracy (%)<br>per feature set |         |              |  |
|--------|---------------------------------|---------|--------------|--|
|        | Prosodic                        | Log Mel | MFCC         |  |
| 5      | 52.48                           | 52.46   | 53.28        |  |
| 15     | 52.36                           | 52.35   | <b>53.45</b> |  |
| 25     | 52.46                           | 52.69   | <b>53.55</b> |  |
| 50     | 52.41                           | 52.78   | 53.41        |  |

ATIS

### Switchboard

# **Results on ATIS**

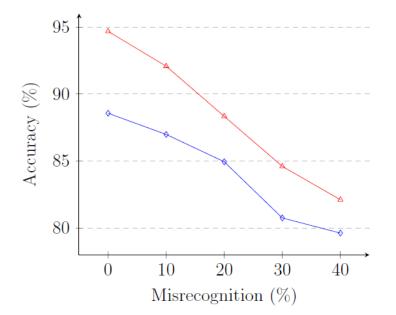
| $\mathbf{Accuracy}(\%)$ |                       |       |  |  |  |
|-------------------------|-----------------------|-------|--|--|--|
| Lexical Model           | Lexico-acoustic Model |       |  |  |  |
| 94.68                   | 74.88                 | 88.57 |  |  |  |

Table 6.7: Accuracy on ATIS per model

### Lexico-acoustic Model – ASR emulation

→ Lexical Model → Lexico-acoustic Model

| Misrecognition<br>(%) | Accuracy (%)<br>per model |                       |  |  |
|-----------------------|---------------------------|-----------------------|--|--|
| (,,,)                 | Lexical Model             | Lexico-acoustic Model |  |  |
| 0                     | 94.68                     | 88.57                 |  |  |
| 10                    | 92.08                     | 86.99                 |  |  |
| 20                    | 88.34                     | 84.95                 |  |  |
| 30                    | 84.61                     | 80.76                 |  |  |
| 40                    | 82.12                     | 79.63                 |  |  |



ATIS

MGK

### Results on Switchboard

| $\mathbf{Accuracy}(\%)$ |                |                       |  |  |  |
|-------------------------|----------------|-----------------------|--|--|--|
| Lexical Model           | Acoustic Model | Lexico-acoustic Model |  |  |  |
| 71.57                   | 53.55          | 72.65                 |  |  |  |

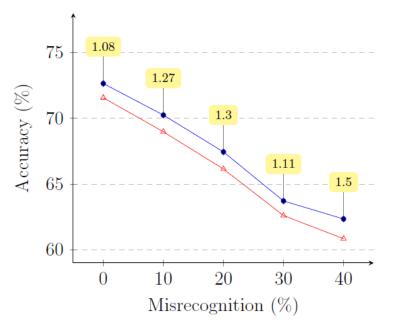
Table 6.10: Accuracy on Switchboard per model

# Lexico-acoustic Model - Simulated ASR

#### ← Lexical Model → Lexico-acoustic Model

| Misrecognition<br>(%) | Ac<br>F       | Improvement           |      |
|-----------------------|---------------|-----------------------|------|
| (,,,)                 | Lexical Model | Lexico-acoustic Model |      |
| 0                     | 71.57         | 72.65                 | 1.08 |
| 10                    | 68.98         | 70.25                 | 1.27 |
| 20                    | 66.15         | 67.45                 | 1.3  |
| 30                    | 62.61         | 63.72                 | 1.11 |
| 40                    | 60.85         | 62.35                 | 1.5  |

### Switchboard



The acoustic CNN offsets slightly the recognition error

The larger the misrecognition is, the larger improvement the lexico-acoustic model yields.

### Lexico-acoustic Model

20

| Corpus      | Classes | CNN            |         |          |        |
|-------------|---------|----------------|---------|----------|--------|
|             |         | Majority Class | Lexical | Acoustic | Bi-CNN |
| ATIS        | 17      | 72.60          | 94.68   | 74.88    | 88.57  |
| Switchboard | 42      | 36.00          | 71.57   | 53.55    | 72.65  |
| ICSI        | 5       | 58.90          | 84.45   |          |        |

Table 6.12: Accuracy results per model on ATIS, SWBD and ICSI.

### Conclusion

- Acoustic Model:
  - MFCC features are more suitable for dialog-act classification.
  - ATIS: accuracy is not significant 3.64% over the majority class.
  - SWBD: accuracy is 17.55% over the majority class.
- Lexico-acoustic Model
  - ATIS: acoustic features worsened the accuracy in 6.5%.
  - SWBD: acoustic features yielded an improvement of 1.08%
  - The acoustic features helped keep the accuracy higher in at least 1.1% regardless of the amount of error (ASR emulation).

### Conclusion

- Why contradicting results?
  - In ATIS the utterances are only information requests and the classes are related only to the lexical content,
  - In SWBD the classes are also related to the prosodic content.
  - The utterances in SWBD differ more acoustically themselves and contain phonetic cues that are strongly related to some of the acts.
  - The success of the model depends on the corpus, this is the relation between the prosody in the utterances and the classes.

### Future Work

- Combine acoustic feature sets in order to find if there is a more appropriate set
- Train the lexico-acoustic model on ICSI that is similar to SWBD
- Explore Attention Mechanisms on Neural Networks for sentence modeling yielding promising results, in order to highlight words or phrases that are useful for the dialog-act classification.
- Encode sentence context. a Wh-Question is more likely to be followed by a Statement than by another Wh-Question.

### Questions...

## ... Thanks



### References

- Kent Bach, Routledge (Firm). Concise Routledge Encyclopedia of Philosophy.
  Psychology Press. Pages 855-856, 2000.
- Yoon Kim. Convolutional Neural Networks for Sentence Classification. 2014.
- Elizabeth Shriberg et al. Can prosody aid the automatic classification of dialog acts in conversational speech? CoRR, cs.CL/0006024, 2000.
- Ye Zhang and Byron C. Wallace. A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. CoRR, abs/1510.03820, 2015.