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Background 

 Dialog-act (DA): 

 Each utterance in a dialog has a performative function in communication. 

 Dialog-act is an act of communication that expresses certain attitude: 

 statement  belief, request  desire, apology  regret.  

 A dialog-act succeeds if the audience identifies the speaker's intention. 

                            Kent Bach(2000) 
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A fragment of a labeled switchboard conversation 

Speaker Dialog Act Utterance 

A Wh-Question What kind do you have now? 

B Statement 
Uh, we have a, a Mazda nine twenty nine and a Ford Crown Victoria 

and a little two seater CRX 

A Acknowledge Oh, okay. 
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Background 

How to approach the task?: 

 Lexical approach 

 Traditional approach, it employs the  utterance transcription (word sequence) 

 Kim (2014) proposed a sentence classification model: a simple but strong one-

layer convolutional neural network using pre-trained word vectors. 
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 Acoustic approach 

 Shriberg et al. (2000) was one of the first works that explored the prosody as a 

potential knowledge source for dialog-act classification. 

 The DAs can be ambiguous if only lexical information is considered 

 Example: This is your car (?)        Statement or declarative questions  

 In dialog systems, automatic speech recognizers generate noisy transcriptions, the 

DA classifier must deal with them.  
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 Lexico-acoustic approach 
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Background 

 

 Convolutional Neural Networks (CNN): 

 

 CNNs are several layers  of convolutions with nonlinear activation functions. 

 

 Each layer applies different filters and combines their results to obtain high-

level features. 

 

 The last layer is then a classifier that uses these high-level features.  

 

 Grid-like input format 
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Background 

 Convolutional Neural Networks (CNN): 

 Image source: Zhang. Y., Wallace, B. (2015) 
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Embeddings 
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Feature maps Filters 
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 Convolutional Neural Networks (CNN): 
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Lexical Model 
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Acoustic Model 

 Acoustic feature extraction  

 

 

 openSMILE feature sets: 

 Prosodic features: F0, voicing probability and 

loudness contours 

  LogMel Spectrum 

 Mel-Frequency-Cepstral Coefficients 

(MFCC) 
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Acoustic Model 



 Dialog-act Classifier – Bi-Convolutional Neural Network 
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 Dialog-act Classifier – Bi-Convolutional Neural Network 

 

 

 

MGK 

Lexical-semantic features 
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Proposed Model 
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13 
MGK 



MGK 

Results: Lexical Model 
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Results: Acoustic Model per Feature Set 

 

 

ATIS Switchboard 
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Results on ATIS 
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Lexico-acoustic Model – ASR emulation 

 

 

ATIS 
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Results on Switchboard 
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Lexico-acoustic Model - Simulated ASR 

 

 

Switchboard 

The acoustic CNN offsets slightly the recognition error 

The larger the misrecognition is, the larger improvement the lexico-acoustic model yields. 
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Lexico-acoustic Model 
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Conclusion 

 Acoustic Model: 

 MFCC features are more suitable for dialog-act classification. 

 ATIS:  accuracy is not significant  3.64% over the majority class. 

 SWBD:  accuracy is 17.55% over the majority class. 

 

 Lexico-acoustic Model 

 ATIS: acoustic features  worsened the accuracy in 6.5%. 

 SWBD: acoustic features yielded an improvement of  1.08% 

 The acoustic features helped keep the accuracy higher in at least 1.1% 

regardless of the amount of error (ASR emulation). 
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Conclusion 

 Why contradicting results? 

 In ATIS the utterances are only information requests and the classes are 

related only to the lexical content, 

 In SWBD the classes are also related to the prosodic content.  

 The utterances in SWBD differ more acoustically themselves and contain 

phonetic cues that are strongly related to some of the acts.  

 The success of the model depends on the corpus, this is the relation between 

the prosody in the utterances and the classes. 
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Future Work 

 

 Combine acoustic feature sets in order to find if there is a more appropiate set 

 Train the lexico-acoustic model on ICSI that is similar to SWBD 

 Explore Attention Mechanisms on Neural Networks for sentence modeling yielding 

promising results, in order to highlight words or phrases that are useful for the 

dialog-act classification. 

 Encode sentence context. a Wh-Question is more likely to be followed by a 

Statement than by another Wh-Question. 
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Questions… 

… Thanks 
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